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PREFACE

TaIs BOOK Is an expanded version of the Princeton Lectures in Finance
that I gave at Princeton University in May 2019. I am grateful to Markus
Brunnermeier and the Bendheim Center for Finance at Princeton Univer-
sity for their hospitality. I also thank Princeton University Press and its
economics editor, Joe Jackson, for supporting this book project. It gave
me a great opportunity to reflect on the recent progress of machine learn-
ing in asset pricing and the open questions that research could tackle in
the future.

My interest in machine learning applications in asset pricing grew out
of joint projects with my co-authors Serhiy Kozak and Shrihari Santosh
that we started when Serhiy and I were colleagues at the University of
Michigan. Looking at the academic literature on stock returns, one of
our areas of interest, we saw a challenge that called for a new approach.
At the time, research on the determinants of stock returns was strug-
gling to make sense of the fact that a huge number of different firm
characteristics seemed to have a role in predicting differences in future
returns between stocks. Yet, published research studies that proposed a
new predictor evaluated its predictive performance relative to a sparse
selection of only a small number of already-known predictors. This
begged the question whether many of the predictors documented in the
literature would actually be redundant if evaluated jointly. It also left
open the question whether these predictors could have important inter-
action effects. A proper characterization of the investment opportunities
in equity markets would have to consider a large set of predictors jointly.
Machine learning methods were appealing to us as a natural solution for
these challenges. One of the papers that resulted from this collaboration
(Kozak, Nagel, and Santosh 2020) forms the core of Chapter 4.

More recently, Ian Martin and I started thinking about machine learn-
ing methods as a model of belief formation for sophisticated economic
agents. For investors, for example, forecasts are crucial decision inputs.
Like data scientists applying machine learning techniques to big data sets,
investors face an enormous number of potentially relevant predictor vari-
ables. To explain the properties of asset prices, it therefore seems impor-
tant that theoretical models account for the high-dimensional nature
of investors’ learning problem. Modeling economic agents as machine
learners gives them sophisticated tools to deal with this problem in
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a realistically complex environment. Chapter 5 takes some first steps
toward such an asset pricing model. A more extensive exposition of this
model is in a joint paper of ours (Martin and Nagel 2019).

I owe a great debt to my co-authors on these projects. Much of what
I write about in this book reflects what I have learned in our collabora-
tion. I am also grateful to Ralph Koijen, Ian Martin, Shrihari Santosh,
Anirudha Balasubramanian, David Yang, students in my PhD classes at
the University of Chicago, and two anonymous reviewers for feedback
on drafts of this book. Tianshu Liu and Michael Yip provided excellent
research assistance. I am also pleased to acknowledge financial support
from the Center for Research in Security Prices (CRSP) at the University
of Chicago.
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Chapter 1

INTRODUCTION

PREDICTION PROBLEMS ARE central to asset pricing. To price stocks,
investors must forecast firms’ future cash flows. Investors seeking out-
performing trading strategies search for signals that predict asset returns.
Researchers testing asset pricing models look for predictor variables that
can forecast return differences between assets or that capture forecastable
variation in returns across time. Models of credit risk require predictors of
default. Hedging and risk management models require forecasts of asset
return comovement.

The number of predictor variables that are potentially relevant in these
applications is enormous. Technological advances have led to an explo-
sive growth in the amount of information that is available to investors
and analysts. Even if we look just at the narrow slice of data that can
be extracted from corporate financial reports, the growth in data avail-
ability has been staggering. Figure 1.1 provides some rough estimates.
One hundred years ago, printed annual volumes like the Moody’s man-
uals that summarized corporate financial reports represented much of
what was readily available to the public. With the advent of electronic
computing, databases like COMPUSTAT expanded coverage to perhaps
hundreds or thousands of variables per firm. Today, there is an almost
uncountable number of variables that one can construct from publicly
available information. The SEC’s Edgar database contains financial report
data on the order of magnitude of terabytes. With textual analysis, one
could probably construct a million variables for each firm from these files.

Corporate financial reports represent only a small fraction of what is
potentially available to investors. Databases that record the past history
of market prices and transactions contain a gigantic volume of data; sen-
timent measures can be extracted from social media; online reviews by
customers and employees may contain valuable information; and many
other data sources could be relevant.

This abundance of potential predictor variables gives rise to a statis-
tical problem. As an example, consider the case of cross-sectional stock
return prediction. Say there are N = 5000 stocks for which we can observe
returns. The number of return predictors, ], that we might consider for
forecasting differences in stocks’ returns could easily exceed the num-
ber of stocks. Is it possible to estimate the relationship between so many
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Figure 1.1. Corporate financial reports: ‘Big data’

predictors and future returns in a way that delivers useful forecasts of
returns?

Conventional statistical techniques like ordinary least squares regres-
sion (OLS) are not designed for such high-dimensional settings where |
is big relative to N. When | > N, OLS regression doesn’t have a unique
solution. And even if ] < N, but J is not much smaller than N, the OLS
estimator often does not produce useful predictions. With such a high
number of explanatory variables, the OLS regression overfits noise. This
leads to a good in-sample fit, but poor out-of-sample forecasts.

1.1 Ab HOC SPARSITY IN EMPIRICAL ASSET PRICING

Research in asset pricing has, until recently, side-stepped this high-
dimensionality problem by focusing on low-dimensional models. Work
on cross-sectional stock return prediction, for example, has focused on
regressions with a small number of firm characteristics. Collectively,
researchers have investigated the predictive power of a large number of
firm characteristics, but in any individual study, the number of predic-
tors considered by researchers is typically small. Similarly, researchers
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looking to summarize the investment opportunities in the cross-section
of stock returns with factor models have focused on models with a very
small number of factors. For example, Hou, Xue, and Zhang (2015) and
Fama and French (2015) include only three or four factors in addition
to the value-weighted market portfolio excess return in their factor mod-
els. These factors are portfolios constructed based on firm characteristics
such as firm size, profitability, investment, or the ratio of the firm’s book
equity to market equity.

Given the background of an enormously large number of variables that
could potentially be relevant for predicting returns and for constructing
characteristics-based factor portfolios, focusing on such a small number
of factors effectively means that the researchers are imposing a very high
degree of sparsity on these models. Among the hundreds, thousands, or
more potential factors, researchers have chosen a specification that sets
the effect of almost all of them to zero.

Imposing such extreme sparsity on the model ensures that conventional
statistical methods are well behaved. But the imposition of sparsity is
ad hoc. The researchers proposing these models have tested their low-
dimensional factor models only against a small subset of the universe of
factors that one could potentially construct based on firm-level variables.
So we do not really know how much these models miss, in terms of pre-
dictive power, relative to the joint effect of this large number of omitted
factors. In this regard, it is interesting to note that the number of “stan-
dard” factors that researchers view as necessary to adequately capture
the cross-section of expected stock returns has been trending up over
time. Fama and French (1993) started with three, then came four- and
five-factor versions, and Barillas and Shanken (2018) suggest that six are
necessary. One interpretation of this expansion in the number of factors
is that the literature is slowly adjusting to the fact that there are, indeed,
relevant omitted factors.

1.2 AD HOC SPARSITY IN THEORETICAL ASSET PRICING

These issues are not only relevant for empirical research in asset pric-
ing, but they also raise questions about theoretical modeling of investor
decision making. Asset prices reflect investors’ expectations of future
asset payoffs. But how do investors come up with these expectations?
Real-world investors face the same problem that empirical asset pric-
ing researchers face: there is an enormous number of potentially relevant
predictor variables. Distilling them into a good forecasting model is a
high-dimensional problem that conventional statistical methods are not
well suited for.
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Most theoretical asset pricing models assume rational expectations.
This assumption is much stronger than just rationality of expectations. In
these models, investors do not have to estimate the forecasting model—
they already know it. More precisely, investors know perfectly the func-
tional relationship between any relevant predictor variables and the
variables they would like to forecast. Given the values of the predictor
variables, investors are assumed to be able to calculate the conditional
expectations of the forecasted variables. This assumption is often moti-
vated with the idea that the model is meant to represent an equilibrium
that would be reached after investors have had time to learn these func-
tional relationships in a stable environment. Even in a low-dimensional
setting, the assumption that the learning process has reached an end
is questionable. Indeed, Timmermann (1993), Lewellen and Shanken
(2002), Collin-Dufresne, Johannes, and Lochstoer (2017), and Nagel and
Xu (2019) have argued that investor learning about parameters of the
data-generating process is important for understanding asset prices. In a
more realistic high-dimensional setting in which investors have to extract
the predictive information from thousands of observable variables, the
investors-have-already-learned argument is even less convincing.

Arguably, therefore, we should have theoretical models in which
investors struggle with high dimensionality in the same way as econo-
metricians do when they study asset price data. Existing models in which
investors learn about forecasting models and their parameters typically
assume that investors condition their forecasts on a small number of pre-
dictors. This sparsity is imposed ad hoc. It seems difficult to make the case
that such a sparse representation adequately reflects the forecasting envi-
ronment faced by real-world investors. Possibly, this mismatch between
the difficulty of the prediction problem faced by investors in theoretical
models and the difficulty of prediction problems in the real world could be
a cause of the empirical shortcomings of existing theoretical asset pricing
models.

1.3 MACHINE LEARNING

Machine Learning (ML) offers tools to tackle high-dimensional predic-
tion problems. Broadly, ML involves algorithms that allow computers to
learn from data. The computer is fed training data to learn, and then the
trained algorithm can be used to make predictions. For example, in image
recognition, an algorithm could be fed data on image features (numerical
color values for each image pixel) from a large number of images that
are labeled into categories. To take an extremely simple case, say we are
interested in classifying images of food into ones showing hot dogs and
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Features: Image pixels X; Labels: y;
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Figure 1.2. Image classification example

0: Not hot dog

Y

1: Hot dog

ones that do not show hot dogs. From the training data set of already-
labeled images, the ML algorithm learns the relationship between image
pixels and the classification as a hot dog or not hot dog. Figure 1.2 pro-
vides a stylized illustration. Once trained, the algorithm can then be used
to predict, for not-yet-classified images, whether they show a hot dog or
not a hot dog. In other applications, trained ML algorithms may clas-
sify email as spam based on email content, predict tumors based on gene
expression data, or interpret sensor data in autonomous driving.

In many of these ML applications, the number of features is extremely
large, and often larger than the number of observations that are available
to train the algorithm. Conventional statistical tools like ordinary least-
squares (OLS) regression would not work in such a setting. Much of the
success of ML in practice is due to the development of effective meth-
ods to discipline the estimation such that the estimated model (or trained
algorithm) produces useful out-of-sample forecasts.

The ML literature therefore offers a rich toolbox to tackle asset pricing
prediction problems in high-dimensional settings. Many of these meth-
ods are not fundamentally new to the statistics literature, but the ML
community has pushed them very successfully into applications. By exper-
imenting heavily and focusing on methods that “work” rather than on
understanding the theoretical properties of estimators, the ML literature
has assembled an impressive array of methods that have proven to be
useful in practical prediction problems. The aim of this book is to survey
some of the first steps that asset pricing research has taken to bring these
tools into asset pricing, highlight current challenges, and sketch some
paths that researchers could take going forward.

The ML toolbox offers the opportunity to analyze asset prices without
imposing extreme ad hoc sparsity on prediction problems. In empir-
ical work, ML tools allow an econometrician to take into account
the joint effect of a large number of predictor variables. In theoretical
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TaBLE 1.1
Terminology in ML and Statistics

ML Statistics

Training, Learning Estimation

Learner, Algorithm Model, Estimator

Features Covariates, Explanatory Variables,

Independent Variables, Predictors
Target, Label, Output Dependent Variable

Example, Instance Data Point, Observation

work, investors can be modeled as machine learners in a realistic high-
dimensional environment.

A recurrent theme throughout this book is that even though ML meth-
ods have been impressively successful in a wide variety of applications,
using these tools off the shelf in asset pricing is not necessarily going
to work well. The properties of data in asset pricing applications are
often substantially different from those in technology, medicine, and other
scientific fields. Successful application of ML methods in asset pricing
therefore will often require some adaptation. To develop appropriate
adaptations, we need to bring in some prior economic knowledge about
the environment that generates the data. The idea, sometimes associated
with ML, that one could make predictions in an entirely data-driven auto-
mated fashion is too good to be true. Much of this book is devoted to
the question of how we can use economic reasoning to make ML tools
effective in asset pricing.

Bayesian statistics offers a framework to incorporate prior knowledge
into statistical estimation. The Bayesian framework therefore allows us
to build a bridge between economic theories of asset pricing and ML. At
various points throughout the book I draw on Bayesian statistics to give
an interpretation of ML methods and to suggest economically motivated
adaptations of these methods.

1.4 TERMINOLOGY

Coming from computer science, the machine learning literature has devel-
oped its own terminology. The concepts and methods often overlap with
similar ones in the statistics literature, but they are named differently. This
can be confusing. Table 1.1 lists some common terms that will appear
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throughout various parts of this book. I will use the ML and statistics
terminology interchangeably.

1.5 SuUPERVISED AND UNSUPERVISED LEARNING

ML methods can be broadly classified into two categories. Supervisedlearn-
ing basically refers to regression methods. The training data that is used to
train the algorithm comes with features x; and labels y;. The goal is to find a
function y; = f(x;) that maps features into labels. These methods are called
supervised learning because one can view the training of the algorithm as
a learning process supervised by a “teacher.” The learner makes predic-
tions based on x; in the training data. By revealing the correct labels y;, the
teacher tells the learner whether the prediction was correct. This informa-
tion about correct or incorrect predictions is used by the learner to tweak
the estimate of the function. Once the training is completed, this learned
function can then be used to predict labels out-of-sample in data sets where
we only have features, but not labels. The image classification example we
discussed earlier belongs to this supervised learning category, but there is
a large number of other methods that belong into this category as well.
Chapter 2 reviews some of the most important ones.

In unsupervised learning, the data that is used to train the algorithm
only has features, not labels. The goal in unsupervised learning is to find
a compressed summary of the data that captures its essential properties.
One simple example of a method in this category is principal component
analysis (PCA). In PCA, a set of variables is approximated with a smaller
number of underlying factors that capture a large amount of the common
variation among the variables.

Methods in both categories have useful applications in asset pricing. In
this book, I focus largely on supervised learning. One of the fundamental
problems in asset pricing—both for financial economists studying asset
prices and for investment practitioners—is the estimation of expected
asset returns conditional on a set of predictor variables. This is, effec-
tively, a supervised learning problem. Similarly, estimation of cash flow
forecasting models in asset valuation is a supervised learning problem.
Unsupervised learning methods often play a secondary role in asset pric-
ing applications, for example, in an initial dimension-reduction step that
summarizes data before it is fed into a supervised learning algorithm.
The distinction between supervised and unsupervised learning in asset
pricing applications is not as sharp as it may seem, though. As we
will see, some supervised learning approaches effectively have built-in
dimension-reduction elements that are similar to those in unsupervised
learning approaches.
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1.6 LiMmrTaTioNs of THis Book

This book has some limitations that I would like to clarify at the outset.
First, this book is primarily a book about asset pricing. I discuss the appli-
cation of ML techniques in asset pricing, but this book is not the place to
look for information on the latest new developments in ML. Moreover, |
do not devote much space to computational questions. This is not because
computational issues are unimportant. Quite to the contrary. The success
of ML in analyzing huge, high-dimensional data sets is founded on many
clever computational advances. But these topics are covered well in the
ML literature. Conceptual questions about the suitability of ML tools for
asset pricing problems have received comparatively less attention. The
focus of this book is on closing this gap.

Second, this book is not an exhaustive survey of machine learning meth-
ods in asset pricing. There are many exciting new approaches in current
working papers and recently published studies, but I will be able to dis-
cuss only a small number of these. Rather than attempting to provide a
comprehensive review of the literature, my objective is to highlight the
opportunities that exist and the generic challenges that arise when we
apply ML methods in asset pricing. The array of available ML tools is
vast. T hope to provide some useful thoughts on issues that we need to con-
sider when we bring them into asset pricing. One theme that I return to
throughout the book is that economic restrictions are important. To reap
the full benefit of ML methods in asset pricing, we need to bring in a lim-
ited dose of economic reasoning when we pick from the ML toolbox and
make specification choices. Off-the-shelf application of ML techniques
without thoughtful adaptation to the specific properties of data in asset
pricing is unlikely to work well.

Third, within the area of asset pricing, I focus mostly on cross-sectional
return prediction applications. There are certainly other areas in asset
pricing where ML methods can be useful, too. For example, valuation
models require predictions of asset fundamentals, credit risk models
require prediction of credit risk realizations, and risk management appli-
cations require predictions of codependencies between asset prices. For all
of these, ML techniques can be useful for bringing in high-dimensional
predictive information and for handling nonlinear relationships. Yet, a
short book like this one necessarily has to be selective. The focus on
cross-sectional return prediction in this book simply reflects what I have
been working on in my own research. I nevertheless hope that by using
these specific applications for illustration, I can provide some insights that
generalize beyond these specific settings.

Finally, throughout this book, I often highlight open questions rather
than providing definite answers. This book therefore does not offer
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cookbook recipes for applying ML techniques in asset pricing. Instead, by
pointing out interesting unresolved issues, I hope to provide some inspi-
ration for future research that addresses these issues. In this spirit, the
last chapter summarizes a number of open research questions that are
particularly important for further progress in this area of asset pricing.

1.7 ORGANIZATION OF THIS Book

The rest of this book is organized as follows. Chapter 2 provides a brief
overview of a number of basic supervised learning methods. The chap-
ter begins by reviewing regression methods that are designed to predict
continuous variables, including ridge regression, lasso, trees and ran-
dom forests, and neural networks. Several of these learning algorithms
involve hyperparameters that need to be set in advance, before the actual
estimation. Chapter 2 discusses data-driven methods of tuning these
hyperparameters to optimize the predictive performance of the learning
algorithm. Hyperparameters often control the degree of regularization
imposed on the estimation. Chapter 2 ends with a brief illustration of
a Bayesian interpretation of regularization. In this interpretation, regu-
larization corresponds to imposing certain prior distributions on model
parameters. We use this Bayesian interpretation in subsequent chapters
inject economic reasoning and prior knowledge into the design of ML
approaches in asset pricing.

Chapter 3 explores challenges that arise when applying ML methods
in asset pricing. The chapter starts by outlining some key differences
between the properties of data that most ML algorithms have been devel-
oped for and the properties of data that are typical in asset pricing.
Throughout the chapter, I illustrate some of these issues with a concrete
empirical example of cross-sectional stock return prediction using each
stock’s own price history as source of predictive information. The chap-
ter highlights that while ML methods are well suited for the prediction
problems that arise in asset pricing, these techniques require significant
adaptation if they are to deliver on their full potential. What works in
typical ML applications, say in the technology sector or biostatistics, does
not necessarily work well in asset pricing. Among other things, the low
signal-to-noise ratio in asset pricing applications means that attempts
to simply let the data speak within an extremely flexible framework
are unlikely to yield good results. We will have to impose some struc-
ture on the learning algorithm. To do so, we need to connect the ML
methods to basic economic frameworks of asset pricing and portfolio
choice. Some principles from Bayesian statistics are useful for making this
connection.
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Chapter 4 describes an approach that makes some progress in this
direction. It starts from a basic mean-variance portfolio choice problem—
or, equivalently, the problem of finding a stochastic discount factor
expressed as a linear combination of asset returns—and the notion that
near-arbitrage opportunities are unlikely to exist in the stock market. By
formulating Bayesian prior beliefs about the risk-return opportunities in
the market, this framework allows us to impose economically motivated
constraints on the return prediction problem. The estimator that emerges
from this approach is similar to the elastic net estimator common in
many ML applications, but with some important differences that come
from taking into account the fact that prediction error covariances are an
important determinant of a portfolios risk-return profile. The empirical
application of this estimator uses a broad set of firm characteristics as
return predictors, as well as nonlinear transformations of those, includ-
ing pairwise interactions between characteristics. The empirical findings
suggest that imposing economically motivated prior beliefs is important
for obtaining good out-of-sample predictive performance.

Chapter 5 takes a theoretical perspective. The earlier chapters show
that statistical analysis of financial market data must address the fact that
the environment is high-dimensional and ML methods provide a good
toolbox for this purpose. But what about the investors whose invest-
ment decisions determine the asset prices that feed into these statistical
analyses? If the information environment in financial markets is such
that the prediction problems are high-dimensional, investors in theoretical
models of financial markets should presumably face this high dimen-
sionality, too. Machine learning methods therefore provide an attractive
blueprint for modeling investor belief formation in theoretical models.
Chapter 5 pursues this approach. To focus on fundamental issues, we con-
sider a simple environment in which investors must learn from historical
data the relationship between stocks’ cash flows and a large set of firm
characteristics that serve as predictor variables. Investors are Bayesian
and shrink their prediction model estimates toward objectively correct
prior beliefs. In equilibrium, stocks are priced such that returns are unpre-
dictable out-of-sample. However, returns are strongly predictable in-
sample in ex-post statistical analyses of returns. This is due to the fact that
an econometrician analyzing data ex post with in-sample analyses has the
advantage of hindsight knowledge that investors in real time do not have.
In a low-dimensional environment this implicit advantage of the econo-
metrician can be small, but it is large in a high-dimensional environment.
In-sample regressions are therefore ill suited for inferring risk premia or
the effects of behavioral biases of investors from asset price data.

Chapter 6 concludes the book by outlining a research agenda for future
research on ML in asset pricing.



Chapter 2

SUPERVISED LEARNING

IN THIS CHAPTER, I provide a brief overview of supervised learning meth-
ods. The literature on this topic is vast and rapidly evolving. The overview
in this chapter is by no means a complete survey. Rather than trying to
give a detailed account of methods in this area, I focus my discussion on
the basic elements of these techniques that seem particularly useful for
asset pricing. Subsequent chapters flesh out the material on some of those
methods in more detail by looking at asset pricing applications.

2.1 SUPERVISED LEARNING AS FUNCTION APPROXIMATION

In supervised learning, the objective is to predict outcomes y (e.g., stock
prices) based on some K observed predictors, or features, collected in the
K x 1 vector x (e.g., a set of firm characteristics). We can characterize this
problem as using training data {y;,x;}} to find the unknown function
feFin

yi=1(xi) +e (2.1)
that maps predictors into outcomes, where ¢ represents mean-zero noise
that is unpredictable by x. The hope is that outcomes encountered outside
of the training data set will be generated from the same statistical model
(2.1) as the training data so that the function estimate ]A‘ (x;) obtained from
the training data will be a good out-of-sample predictor.

Supervised learning methods can be grouped into two categories. Clas-
sification methods are used in settings where the dependent variable y is
categorial. Regression methods deal with continuous dependent variables.
In asset pricing applications, regression problems are more common,
although classification methods can also be useful, for example for pre-
diction of binary events like a corporate default. I focus on regression
methods in this book.

Supervised learning methods also differ in the class of functions F
they consider. Some methods work with linear functions. Methods in this
category are variants of linear regression methods that are ubiquitous
in econometrics. Other methods allow for highly nonlinear functions.
These methods have analogies with nonparameteric methods in econo-
metrics such as kernel regression approaches. Common to all of these
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supervised learning methods is that they are designed to work well in
high-dimensional settings where x includes a very large number of fea-
tures, possibly greater than the number of observations in the training
data.

ML researchers typically try to avoid making strong assumptions about
f such as, for example, assuming that f is linear and x low-dimensional,
with only a few variables selected a priori out of a much larger set of
potential predictors. Instead, the goal is to let the data speak about f(x;)
under only weak assumptions about f and about the set of relevant predic-
tors. How far can one push this idea? Is it possible to develop a completely
automated universal ML approach that can uncover [ entirely from the
data in any arbitrary setting (e.g., no matter whether the prediction prob-
lem is, say, in image recognition, biomedical applications, or asset pricing)
and then provide predictions that generalize from the training data to test
data sets that were not seen by the learning algorithm?

Wolpert (1996) shows that such a universal learning algorithm does
not exist. This result is known as the no-free-lunch theorem in ML. This
means that unless we have some prior knowledge about the prediction
problem, we don’t have reason to prefer, just based on first principles,
one learning algorithm over another one. Moreover, if we have multiple
algorithms that fit the training data equally well, we cannot determine,
without prior knowledge, which of these is likely to yield better predic-
tions on a yet-unseen test data set. Finding an algorithm that produces
good predictions on the test data therefore necessarily requires some
domain-specific prior knowledge about the prediction problem that we
are trying to solve. In our supervised learning framework here, this could
be knowledge about the class of functions that / belongs to, the stability
of this function as we move from a training data set to a test data on
which we want to make predictions, and the statistical distribution of ¢
and x. Successful prediction requires that we bias our choice of learning
algorithm, including the details of its implementation, towards algorithms
that are appropriate for the nature of the prediction problem we face
(Wilson and Martinez 1997).

This connects to an underlying theme of this book. To successfully
apply ML in asset pricing, we need to look for ways to bring in knowl-
edge about the properties of asset price data when we choose among the
many available learning algorithms and their various specifications. The
number of learning algorithms and specification choices that we could
take off the shelf to throw at a prediction problem is huge. But not all of
these are equally well suited for prediction problems in asset pricing.

We now briefly review several supervised learning methods. Then, at
the end of this chapter, and also in the next chapter, we return to the
question of how to impose prior knowledge on the learning algorithm.
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2.2 REGRESSION METHODS

Regression methods have a long tradition in statistics and econometrics.
The novelty in many ML applications of these techniques is in the tweaks
that have been applied to these methods to make them work well—in the
sense of being computationally feasible and producing good predictive
performance—in high-dimensional environments and in possibly highly
nonlinear problems.

We start by reviewing linear models. For reasons that we discuss in
more detail in Chapter 3, linear models probably have a more important
role to play in asset pricing than in typical ML applications outside of
finance. Moreover, linear models can be more flexible than it might seem.
Methods that are formally linear can easily accommodate many types of
nonlinearities through nonlinear transformations of predictor variables.

2.2.1 Linear Methods: Ridge Regression and Lasso

In a linear regression model, we assume that the function f(x;) is linear,
Le.,

yi=x;g + i, (2.2)
where g is a vector of unknown regression coefficients. While the model is
linear in terms of how y; relates to the elements of x;, the vector x; could
include nonlinear transformations of predictors.

One type of nonlinear transformation that we will come back to repeat-
edly in this book involves variable interactions. For example, if we start
with an original 2 x 1 vector of features b; = (b1 ;, b2 ;)', we could generate
a vector x; = (b1, b2, h1,b2;)" that includes the product by ;b ; among
the explanatory variables in the regression in order to capture interaction
effects between the two original features.

Now suppose we have N observations in a training data set that
we stack into an N x 1 vector y=(y1,y2,...,yN) and N x K matrix
X = (x1,%2,...,XN)’. A common way to estimate g is to choose a g that
minimizes the sum of squared errors, i.e., our objective is

m;n(y—Xg)’(y—Xg)- (2.3)

Differentiating with respect to g, setting the first derivative to zero, and
solving for g, we obtain the ordinary least squares (OLS) estimator

g=(X'X)"" Xy, (2.4)
and the in-sample fitted values

§=Xz. (2.5)
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In high-dimensional settings, where K is not small relative to N, or per-
haps even bigger than N, predictions based on OLS estimates often turn
out to be unreliable. While the in-sample R? in this case can be very high,
the R? for out-of-sample predictions can be very low or even negative. The
reason is that with so many covariates relative to the number of observa-
tions, OLS greatly overfits the data by tweaking g to fit noise rather than
true signal. These in-sample seemingly predictable patterns then do not
repeat in an out-of-sample data set and the predictions perform poorly. In
the extreme case with K> N, OLS estimates are not unique. There is an
infinite number of solutions for g that all fit the training data perfectly. But
much of this perfect fit may be spuriously fitting the ¢; in y; =f(x;) +¢&;
rather than capturing f(x;).

Ridge regression. When K is large, it can help predictive performance to
penalize the estimator for picking large magnitudes of the elements of g.
Ridge regression is one example of such an approach. In Ridge regression
(Hoerl and Kennard 1970), the objective is to minimize the same sum-
of-squared-error loss function as in OLS, but augmented with a squared
L?-norm penalty g'g,

. 1 / /
min [—(y—Xg) (y—Xg)JrVgg]- (2.6)
g |N

Thus, the objective has two parts. The first term represents the loss. OLS
regression would just minimize this part. The second term represents the
penalty where the hyperparameter y controls the strength of penalization.
The solution is

g=(XX+yIx) " Xy, (2.7)

where I is a K x K identity matrix. By adding a diagonal matrix (a
“ridge”) to X’X, the presence of yIg in the inverse induces shrinkage
of the regression coefficients toward zero. Intuitively, the presence of the
penalty term with g’g in (2.6) penalizes estimates that have big magnitudes
of the elements of g. As a result, ridge regression ends up with regression
coefficient estimates that are closer to zero than OLS estimates (OLS is
the special case y = 0). The L2-shrinkage in ridge regression is an example
of regularization to prevent overfitting.

In the special case of X with orthonormal columns, i.e., X’X =1, one
can see from (2.7) that ridge regression shrinks each element of the coef-
ficient estimate vector from the OLS estimate g; ors toward zero by the
same factor: gj=g; ors/(1+y).

Lasso. An alternative and popular approach is to penalize with an
L'-norm penalty |g|l{ = Z;K:1 lgj| instead. This is the lasso method
(Tibshirani 1996). The lasso objective is



2.2. REGRESSION METHODS 15

K

1 )
min | 5y =X/ (y =X +v ) Igl |- (2.8)
j=1

Unlike in the ridge case, the solution is not linear in y and there is no
closed-form expression for this solution, but several procedures exist that
can solve numerically for the lasso solution, including the least angle
regression (LARS) algorithm (Hastie, Tibshirani, and Friedman 2009).
As in the ridge regression case, this penalty specification also induces
shrinkage of coefficients toward zero. But shrinkage is of a different
nature here. Unlike ridge regression, the lasso can yield sparse coefficient
estimates, where only a small number of the elements of g are nonzero.
In the special case of X with orthonormal columns, the lasso shifts OLS
estimates toward zero by a fixed amount y, but if doing so would flip the sign
for an element of g, this element is set to zero instead (Hastie, Tibshirani,
and Friedman 2009). This means we have g; =sgn(g; or.5)(1;,015| — ¥)+-
Elastic net. The lasso runs into problems with correlated variables.
Suppose, for example, that we have two strongly positively correlated
covariates that are both associated with a corresponding element of g
that takes exactly the same true value. Whether we include only one or the
other covariate among the nonzero coefficients (with coefficient estimate
doubled relative to the true coefficient) or both (with the two coefficient
estimates approximately equal to the true coefficients) affects approxi-
mately neither the loss part nor the penalty part of the lasso objective in
(2.8). As a consequence, the lasso is nearly indifferent between including
one, the other, or both covariates among those that get nonzero coeffi-
cients. It may depend on some irrelevant properties of noise in the data
which of these options lasso will pick. Slight tweaks to the data could
lead the lasso to flip from selecting one instead of the other variable. To
maximize predictive performance, it may however be best to include an
average of both covariates in the model, so that we average out the noise
of the two covariates. This is precisely what ridge regression would do.
For this reason, the elastic net (Zou and Hastie 2005) combines ridge
and lasso penalties

K

. 1 / /
min | (v~ Xg) (y—Xg)JrJ/lZl:Ig/IJergg : (2.9)
=

Like the lasso, the elastic net will set some coefficients to exactly zero, but
it relies on variable selection to a lesser degree than the lasso and instead
also imposes some ridge-like shrinkage.

One important issue that we will come back to in the next chapters
is that the ridge, lasso, and elastic net solutions are not invariant to the
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scaling of the covariates. For example, in the ridge case, suppose that X is
such that X'X is diagonal. How much estimates get shrunk to zero when
we add the ridge yIx to X’X depends on the magnitude of the diagonal
elements of X'X. For covariates with small variance and hence a small
diagonal entry in X'X, the effect of adding y to the diagonal element is
much bigger than for covariates with large variance. For this reason, it is
common to standardize inputs to unit standard deviation before comput-
ing the ridge estimates. But this may not always be the right approach.
Sometimes prior knowledge about a learning problem can tell us that we
actually should shrink the coefficients of some covariates more than those
of others.

2.2.2 'Trees and Random Forests

Regression trees approximate the nonlinear function f(x;) with a multi-
dimensional step function (Breiman, Friedman, Olshen, and Stone 1984).
The feature space is divided into regions, or leaves, that contain a neigh-
borhood around each point x; at which we want to approximate f.
Within each leaf h=1,..., H, the function f(x;) is approximated as an
equal-weighted average, y,,, of the observations y; in this leaf.

Finding a suitable general partition of the feature space can be difficult.
For this reason, tree-based algorithms often use recursive binary parti-
tions. The partitioning of the feature can then be represented as a decision
tree; hence the name of the method. Panel (a) in Figure 2.1 presents an
example.

How can we find a partition that approximates / well? Finding the
globally optimal partition that minimizes the residual sum of squared
errors can be computationally infeasible. Even if we restrict ourselves to
recursive binary partitions, there may still be an enormous number of pos-
sible trees that we would have to evaluate to determine global optimality.
Much of the success of tree-based methods has come from the develop-
ment of algorithms that do a good job in finding partitions that work
well in applications, even though they typically do not find the globally
optimal partition.

One common approach is a greedy algorithm (see, e.g., Hastie, Tib-
shirani, and Friedman 2009). Instead of evaluating global optimality, the
algorithm walks through the tree and determines the best split based on
a local assessment of fit at each step. More precisely, we start with all
the data and we check for each feature what the residual sum of squared
errors would be if we partitioned the sample into two regions just based
on this feature and with a threshold that maximizes fit. We then choose
to split based on the feature where we get the best fit. Within each of
the resulting two regions, we then repeat this process. We keep doing this
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Figure 2.1. Regression tree example

until we have grown the tree to the point at which the number of obser-
vations within each region reaches a minimum number that we have set
as a termination criterion at the start of the process.

Concretely, for the example tree in Figure 2.1, suppose in the first step
that splitting on x1 provides the biggest explanatory power compared
with single splits based on the other features. We therefore split into two
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regions by applying a threshold to x1. We choose the threshold such that
it gives us the best fit, in terms of residual sum of squared errors, when we
approximate f with the equal weighted average of y; in the two regions
left and right of the threshold. In the next step, suppose it turns out that
splitting by x, in each branch delivers the best fit. We therefore split by
x; into four regions, based on fit-maximizing thresholds that are specific
to each branch of the tree. Finally, going through similar reasoning as
in the previous steps, we split once more based on x1 in the left branch
of the tree, resulting in a total of H=35 leaves. Let R1, Ry, ..., Rs denote
the regions in terms of x = (x1, x2) corresponding to the leaves. Panel (b)
presents the fitted values, y;,, calculated as the equal-weighed average of
observations y; within each leaf, i.e., for observations with x; € R,.

The method is therefore conceptually similar to kernel regression. In
a simple variant of kernel regression, predictions are also obtained by
averaging observations in a neighborhood around the point of interest,
but the definition of what constitutes a “neighborhood” and the weighting
of data in this neighborhood are different in the tree method.

We could have carried the process further, resulting in a larger tree.
So how far should we take the process of partitioning the feature space?
A large tree has the advantage that it can more accurately approximate
highly nonlinear functions. The downside is that it may overfit noise in
the training data, resulting in poor out-of-sample prediction performance.

To balance accurate approximation of f with avoiding overfitting, we
can start with a very large tree that would certainly overfit and then prune
the tree by collapsing leaves. To develop a criterion for how much to prune
the tree, we can add a penalty term to the residual sum of squares. Let H
denote the number of leaves at the end of the tree. We can then look for
a pruned tree that minimizes the penalized residual sum of squares

H

>3 -y +vH. (2.10)

h=1x;€Ry,

The tuning parameter y controls how much we want to prune the tree.
The value y =0 would imply no pruning, while higher values of y imply
more pruning.

A very popular alternative to penalization of tree size is to use Random
Forests (Breiman 2001). In this case, we grow a tree to full size (up to
some small minimum leaf size) without pruning and then apply bootstrap
aggregation, or bagging, to reduce the overfitting. This works as follows.
Suppose we have | features in x;. First we draw a bootstrap sample from
the training data that is of the same size as the original training data set. In
this bootstrap sample, we then randomly select 72 < | features at random
and grow a tree until the minimum leaf size is reached. We record this



2.2. REGRESSION METHODS 19

tree and then draw another bootstrap sample from the original data to
repeat the process. The fitted value at a point x; is the average of the fitted
values at x; that we get from each individual tree. The constant m is a
tuning parameter. Picking a value for it is similar to choosing a penalty
parameter in penalized approaches.

Intuitively, each of the bootstrap samples has, to some extent, different
noise. So if the fully grown trees are overfitting noise, their predictions
will be affected by noise in different ways in different bootstrap sam-
ples. Moreover, the random selection of a subset of features in each
bootstrap sample magnifies these differences. Taking the mean predic-
tion across trees from different bootstrap samples averages out much of
these noise-induced effects. Athey, Tibshirani, and Wager (2019) offer an
interpretation analogous to kernel regression. Kernel regressions make
predictions at point x; by forming a weighted average of observations in
a neighborhood around x;, giving more weight to closer observations.
Athey et al. show that averaging across trees in random forests has a
somewhat similar effect in that closer points are included more often than
distant points in the construction of the prediction at x;.

2.2.3 Neural Networks

Neural networks are essentially methods to estimate highly nonlinear
regression functions. For example, suppose we have | covariates x;, which
serve as inputs to the network and one dependent variable y;, which
is the output. Inputs and output are connected through a hidden layer
of H nodes that we can think of as underlying latent variables. With
yi =[(x;) + €i, the network can be expressed as

f(xi) =ax +whg(as + Wix)), (2.11)

where a1 + Wx; represents the vector of latent variables. The activation
function g is nonlinear and operates element-wise on each latent variable.
For example, a popular choice is the Rectified Linear Unit (ReLU) where
g(z) =max(0, 2), which is a piecewise linear function that outputs an ele-
ment of z directly if the element is positive, and outputs zero otherwise.
The output of the activation function is then weighted by w, and shifted
by a, to produce the final output f(x;) in the output layer.

The nonlinearity of g is crucial for the network to approximate non-
linear functions. If g were linear, e.g., g(z) = Az for some matrix A, the
network would collapse into a linear regression model y;=a+g'x; + ¢,
with g =w,AW and a =a; + w)Aa.

The number of hidden nodes controls the flexibility of the func-
tion approximation. With a large number of hidden nodes, one can
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approximate highly nonlinear functions arbitrarily well (Cybenko 1989;
Hornik, Stinchcombe, and White 1989). Networks used for image recog-
nition or natural language processing contain tens or hundreds of thou-
sands of nodes (LeCun, Bengio, and Hinton 2015).
One can add additional layers. For example, with two hidden layers we
have
f(x)) =a3 +wsg (a2 +Wag (a1 +Wix))). (2.12)

Deep neural networks add several such layers, often 10 to 20. The result
is a network that has a sequence of linear mappings with interwoven
nonlinear transformations. The number of parameters can be very large.
For example, with a single hidden layer with H nodes, one output, and |
inputs, the total number of parameters in Wy, a{,and ay is H x [ + H + 1.
With J=1000 inputs and H= 10000 hidden nodes, this would amount
to more than ten million parameters. For a fully connected network,
each added layer with the same number of hidden nodes adds another
H x H + H parameters.

In principle, networks with a single hidden layer can approximate any
nonlinear function. In practice, though, with typical data sets, adding lay-
ers to a network often seems to lead to better performance. Whether deep
networks with many layers are generally better is still an open question
(see, e.g., Ba and Caruana (2013)). Lin, Tegmark, and Rolnick (2017)
argue that certain properties of the data and functions to be approximated
matter. For example, deep networks are well suited for approximating
functions that have a hierarchical structure.

Interaction effects—i.e., situations where the joint effect of multiple
inputs on the output is not additive—are a type of nonlinearity that may
be particularly relevant for the asset pricing applications that we start dis-
cussing in the next chapter. It is therefore useful to take a closer look at
how such interactions can be captured by a neural network.

Consider a network with a single hidden layer as in (2.11) with two
nodes. Suppose further that a; =0, wy, = (1,1)’, a1 =(-3/2,-3/2), the
first row of Wy is (1,1) and the second row is (—1,—1), and g(z) =
max(0, 2), i.e.,

f(x)) =max(0,—-3/2 +x;1 +x;2) + max(0,—3/2 —x;1 —x;3). (2.13)

In this case, the first term only “activates” if the sum of the two features
x;1 and x; is large enough; otherwise it is zero. The second term only
“activates” if the sum of the two features x;1 and x;, is small enough.
The result is the function shown in Figure 2.2.

By adding additional hidden nodes, we could add additional piecewise
linear parts to this function, for example for larger values of x;1 +x;>
and more strongly negative values of —x; 1 — x;>. In this way, the neural
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Figure 2.2. Neural network example: Interaction effects

network could approximate, for example, a function like (x;1 + xi,z)2
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To fit neural network using training data, one can use a sum-of-squared
errors objective similar to the one we discussed earlier for linear regression

methods. Collecting all parameters of the network in the vector 6, the

objective is

1

N
min } J[yi —f(xi,0)1.

(2.14)

,1t can

1

Minimization of this objective can be carried out with numerical methods

7

such as stochastic gradient descent or quasi-Newton methods (see Hastie,

Tibshirani, and Friedman 2009). For the purpose of minimization

also be advantageous to use a smooth activation function such as the
sigmoid function instead of a non-differentiable function such as ReLU.!

For neural networks, too, we need to worry about overfitting the train-
ing data. A network with many nodes and layers might approximate
the training data extremely well but perform poorly in predicting out-

of-sample. Regularization can prevent such overfitting

Analogously to

adding the penalty term in the ridge regression objective (2.6), we can

I takes values in the interval (0, 1) and

approaches asymptotes of 0 and 1 for z; = —oo and z; — 400, respectively.

)N~

—z;

=[1+4exp(

)

LThe sigmoid function g(z;
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add a squared L2-norm penalty term to the objective here:

N

min ;m —f(xi,0)1* +70'6. (2.15)

This has the effect of shrinking the neural network weights toward zero.
With a sigmoid activation function, very small weights imply that the
activation function is in a region where it is approximately linear. So not
only is the output shrunk toward zero, but the neural network is also
shrunk toward a linear regression model.

As in the case of the linear regression methods we discussed earlier,
scaling of inputs matters here for the effects of regularization. Greater
absolute magnitude of an input would mean lower magnitudes of the
weights associated with this input on the path on which it feeds through
the network, and hence a smaller role of these weights in the penalty term
y0'0 and therefore less shrinkage applied to them. It is common to scale
inputs to have mean zero and unit standard deviation, but this is not
necessarily the best approach. Based on a priori considerations about the
prediction problem and the properties of the data, it could be preferable
to have different inputs scaled to different magnitudes in order to increase
the degree of shrinkage for some elements of # and reduce it for others.

2.3 HYPERPARAMETER TUNING

The learning algorithms that we discussed so far involve hyperparameters
that need to be preset before training. For example, the ridge regres-
sion objective (2.6) depends on the hyperparameter y that determines
the weight on the penalty term in the objective, and hence the degree of
shrinkage induced by the penalty. To estimate the regression coefficients g
from the training data, we need to fix a value of y beforehand. Similarly,
the lasso requires a preset penalty parameter, and the elastic net estimator
requires two. As we just discussed in the previous section, neural network
objective functions can have penalty parameters, too. For random forests,
the size of the randomly drawn set of candidate features to split nodes on
and the maximum depth of the trees are hyperparameters, for example.
Ultimately, we are interested in having the trained model perform well
in prediction tasks. For this reason, we seek hyperparameter values that
minimize the prediction error. In order to minimize prediction error, we
need to be able to estimate the prediction error for a given value of the
hyperparameter. This is not entirely straightforward. We cannot simply
use the in-sample error in the training data set, because it is a downward
biased estimate of the prediction error that we obtain in a new data set not
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used for training the model. In the ridge regression case, for example, with
a ridge regression estimate of g(y) and squared error loss, the in-sample
error is

1
mse()/)=ﬁ[y—Xg(V)]/[y—Xé(V)]- (2.16)

Within the training data, the ridge regression estimate g fits not only the
variation in y truly related to X, but also to some extent the noise in the
residual . To what extent an estimated model can (over-)fit the noise in
the training data depends on the model’s complexity. One approach to
estimating the expected out-of-sample prediction error therefore tries to
correct the in-sample error for the bias induced by the model’s complexity.
In an OLS regression, the complexity would simply be the number of
parameters that are estimated, which in turn is equal to the number of
covariates. In the ridge regression case, the situation is a bit more com-
plicated, because shrinkage constrains the estimates and thereby reduces
model complexity. When we look for an optimal ridge regression penalty,
we do not simply pick y to minimize mse(y), but also take into account
the out-of-sample prediction benefits of reduced model complexity that
come with a higher y.

For linear models where the fitted values can be expressed as y = Hy,
one can capture model complexity with the effective number of param-
eters equal to the trace of the “hat”-matrix H (Hastie, Tibshirani, and
Friedman 2009). In the ridge regression case, this effective number of
parameters is

dy)=tr [XX'X +yIx)~'X'] (2.17)

where tr[.] represents the trace operator. In the OLS case, where y =0,
d would simply be equal to the number of covariates included in the
regression, i.e., d = K.2 With y > 0, we have d < K. Shrinkage reduces the
effective number of parameters. For example, in the special case of X with
orthonormal columns, we would have d = K/(1 + y).

Equipped with the effective number of parameters, we can then calcu-
late measures of fit that adjust the in-sample error for its optimistic bias
and that account for the complexity-reducing benefit of a higher penalty.
The adjusted measures should be a better estimate of the expected pre-
diction error than the in-sample error. One such measure is the Akaike
information criterion (AIC). In the case of a ridge regression and under
the assumption that e represents uncorrelated Gaussian noise, the AIC is

AIC(y) = Nlogmse(y) +2d(y). (2.18)

2To see this, use the cyclical properties of the trace, which imply tr[X(X'X)~1X'] =
X' XX'X) " =trdg) =K.
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The first term increases as we increase y, while the second term shrinks.
We can take the y that minimizes the sum of the two terms as our
hyperparameter estimate y .

While the AIC can sometimes be helpful to get an approximate idea of
the expected prediction error, and hyperparameter values that minimize
it, it has some shortcomings as well. For nonlinear models, getting a mea-
sure of model complexity, or the effective number of parameters, is more
difficult than for a linear model. And even for linear models, the AIC relies
on strong assumptions. The expression for the AIC in (2.18) requires that
the elements of & be independently and identically normally distributed.
In case of deviations from this assumption, we would need to specify the
exact form of the likelihood in order to implement the AIC.

For these reasons, ML practitioners often prefer alternative approaches
to prediction error estimation and hyperparameter tuning that are less
demanding in terms of underlying assumptions. A popular purely data-
driven method is cross-validation (CV). In CV, the model estimates
obtained from the training data are used to make predictions on a sepa-
rate, independent validation data set. The model’s error on this validation
data set then provides an estimate of the prediction error. CV seems like a
natural method for assessing predictive performance: we simply check the
actual predictive performance on a data set that we didn’t use to train the
model. Moreover, Stone (1977) showed that model comparisons based on
CV or AIC are asymptotically equivalent. In this sense, we can think of
CV as empirically approximating the AIC.

Using the CV approach, we can use the prediction error in the valida-
tion data as the objective to minimize when we tune hyperparameters. For
example, in the case of ridge regression, we use the estimates g(y) that we
obtained from the training data for a given value of y to construct fitted
values and prediction errors on a validation data set (X,,y,) that is inde-
pendent from the training data set, i.e., we calculate y,, — X,g(y). We then
look for a value of y that minimizes the sum of squared prediction errors
in the validation data, i.e.,

y =arg, min[y, — X,g(»)1'ly, — X,8()]. (2.19)

In many cases, just performing a simple split of the available data into
one training and one validation sample is not an efficient use of the data.
The method of k-fold CV seeks to improve the efficiency of prediction
error estimation by using the entire data set for training and validation.
The method achieves this by splitting the data set into k parts, or “folds,”
that are usually equally sized. We then use one of the k folds for model
validation and the remaining k — 1 folds for model estimation. Then we
pick another one of the k folds for validation and the remaining folds
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for estimation, and so on, until we have used all the k folds exactly once
for validation. We use the average of the prediction errors from the k
validation folds as our estimate of the expected prediction error. We then
search for hyperparameter values that minimize this estimated expected
prediction error. In the example of ridge regression, we would look for a
value of y such that

k
. 1 . .
y =arg,min 7 E o) — Xv()8—ui W Vo) — Xv(h&—py (V)] (2.20)
=1

Here v(j) =1, 2, ..., k denotes an index of the k folds that the data set has
been divided into, while —v(j) refers to the remaining part of the data set
that is not in the j-th fold.

How many folds should we use? There is no clear guidance on this ques-
tion in the ML literature. Broadly speaking, there is a trade-off. Keeping
k very small means that we use smaller training data sets to estimate the
model. This handicaps the model by reducing the amount of data used
to estimate its parameters. The consequence is a pessimistically biased
assessment of the prediction error. On the other hand, large k£ means that
the training data set used in each of the k estimation runs is overlapping
to a large degree. In this case, there is the concern that the full data set
that the estimation and validation folds are taken from is somewhat spe-
cial in its properties and therefore the prediction error we estimate from
large k-CV is special as well. If we looked at an independent draw of a
new data set, and used this one to train the model, perhaps we would typ-
ically get a higher or lower prediction error than on our original data set.
CV with small k protects us from this possibility to some extent because
it effectively uses quite different draws of training data sets that are not
so strongly overlapping. In this sense, there is a bias-variance trade-off
(Hastie, Tibshirani, and Friedman 2009): large k means that we get a close
to unbiased estimate of the prediction error, but one with high variance—
which here means a high degree of uncertainty about how the prediction
error would look on a newly drawn data set used for training.

While this trade-off is clear conceptually, there is no clear guidance on
where the optimum is in a particular application. It likely depends on
the properties of the data and the algorithm being trained. In addition,
CV with large k is computationally intensive. It requires k repetitions of
model training and validation, which can be prohibitive on large data
sets. In practice it is therefore common to choose values of k that are far
smaller than the number of observations.

In interpreting the prediction error that we obtain in the k validation
folds, we need to keep in mind that we used these folds to estimate y.
Since we pick 7 to minimize the prediction errors in the validation folds,
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the average prediction error from the validation folds for this estimate
of y should be an optimistically biased estimate of the expected pre-
diction error. For this reason, we might want to reserve another part of
the data as a test data set that was used neither for model training nor
for hyperparameter tuning and evaluate the prediction error on this test
data set.

2.4 BAYESIAN INTERPRETATION

Application of ML methods requires a number of choices. Even if we
fix the model that we want to train—e.g., a linear regression or a neu-
ral network—we face a number of possibilities on how to regularize the
estimation. For example, in penalized regression, the choice of penalty
function will determine whether the estimated model will likely feature
sparsity (if we use an L'-norm penalty) or not (if we use a squared L2-
norm penalty). Which one is best? Having made this choice, we then need
to tune the penalty hyperparameters, as we just discussed in the previous
section. Choices concerning variable scaling are important, too. In this
chapter we have already encountered the issue that the effect of penal-
ization on parameter estimates is sensitive to the scaling of the input
variables. Should we normalize all inputs to have equal standard devi-
ation or would some other type of scaling be better? The answer is not
obvious.

We could try to simply let the data speak on these questions. Just as
we can optimize hyperparameters with CV, we could try to use CV to
find out which of these choices works best in terms of producing lower
prediction error on a validation data set. Ultimately, though, we would
run into the no-free lunch problem (Wolpert 1996) emphasized at the
beginning of this chapter: we cannot hope to identify one ML algorithm
that is universally better than any other algorithm over all possible data
generating distributions. We will have to make some a priori assumptions
about the properties of the data. A purely data-driven ML approach is not
possible. We need to bring in some prior knowledge about the objective
we are pursuing with the ML approach and the kinds of data that the
algorithm will be confronted with.

A Bayesian interpretation of parameter estimation and regularization
can be helpful for this purpose. Bayesian statistics allows us to express
prior knowledge probabilistically, in terms of prior distributions. Con-
sider the linear regression framework y=Xg+ ¢ and assume that & ~
N(0,X), where we know the values of entries in the covariance matrix
X, but not the value of the coefficient vector g. Prior knowledge comes
in the form of a prior distribution for g. Under certain assumptions, we
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can map Bayesian estimation into the ridge and lasso regressions we dis-
cussed earlier in this chapter. As we show now, the specification of the
prior distribution affects the type of penalization that is imposed on the
objective function.

Suppose we have the view that the elements of g are drawn from a mul-
tivariate normal distribution, g ~ N (0, X,). Given this prior distribution,
p(g), and the likelihood, p(y|g), implied by the normal distribution of the
regression residuals &, Bayes’ rule tells us that the posterior distribution
of g given the observed data y follows

p@gly) xp(ylg)p(g)- (2.21)

With normal prior and likelihood, the posterior distribution is normal,
too. The mean of this posterior distribution takes a form akin to a gener-
alized least-squares (GLS) regression, but with an additional term in the
inverse (Lindley and Smith 1972):

-1
8= (X’):*1X+zg*1) X'z ly. (2.22)

The additional term Zg_l in the inverse induces shrinkage that tilts the
estimates away from the GLS estimates toward the mean of the prior dis-
tribution (which we assumed to be a vector of zeros here). If we specialize
to uncorrelated homoskedastic regression residuals, ¥ = Ino?2, and uncor-
related and homoskedastic elements of g under the prior distribution,
Y, = IKcrgz, we obtain

o? B

g=(XX+5Ik] Xy. (2.23)
o
g

This expression is identical to the ridge regression estimator in (2.7) with
y =072 /Gg%. This means that the ridge regression penalty has a Bayesian
interpretation that relates y to the dispersion in the prior distribution. If
ag2 is large, which implies that we do not have a precise prior view about
the likely magnitude of the elements of g, y is small and there is little
shrinkage toward the prior mean. In contrast, if the prior distribution is
tightly concentrated around the prior mean, with og small, then shrinkage
is strong.

The Bayesian framework allows us to give a more precise interpreta-
tion of the concern about “overfitting” that we used earlier to motivate
regularization and shrinkage. Overfitting means estimating a model with-
out giving proper weight to prior infzormation that we have about the

parameters. If our prior is diffuse, o5 — oo, there is really no motiva-

tion for shrinkage. In this case, fitting a regression without shrinkage
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is not overfitting the training data. Speaking of overfitting only makes
sense if there is reason to think—perhaps based on economic plausibil-
ity considerations—that the magnitude of the regression coefficients is
unlikely to be extremely large. Then, ignoring such information and esti-
mating a regression without shrinkage would mean that we are overfitting
the training data by not giving any weight to this prior information.

Throughout much of this book, we will come back repeatedly to this
Bayesian interpretation of regularization. In the ML literature, it is more
common to discuss the effects of regularization in terms of a bias-variance
tradeoff. Under this perspective, fitting an estimator to training data with-
out much regularization yields low bias, but high estimation error, i.e.,
high variance. Regularization can reduce variance, but at the cost of bias-
ing the estimator. From a Bayesian perspective, however, the frequentist
notion of unbiased estimation that serves as a reference point for these
tradeoff calculations is not of any particular significance. Given prior
beliefs, the posterior, and the regularization implied by the posterior, rep-
resent the optimal way to combine these prior beliefs and the information
from the empirical data. For the purpose of looking for links between reg-
ularization and economic restrictions—a central theme in this book—it is
more useful to discuss how prior information shapes regularization than
to frame it in terms of a bias-variance tradeoff.

The Bayesian interpretation of regularization also clarifies how we
should think about scaling of covariates in a ridge regression. If one wants
to use ridge regression, variables should be scaled in such a way that
a prior that assigns equal variance to each element of g is plausible. In
contrast, if we believe that some coefficients are likely smaller in mag-
nitude than others, then ridge regression does not yield the appropriate
degree of shrinkage. It shrinks too much the coefficients on covariates
with coefficients likely far from zero relative to those that are likely closer
to zero. We should then rescale the covariates such that equal variance of
the elements of g becomes plausible. This is the point where we need to
bring in domain-specific prior knowledge about the prediction task and
the data-generating distribution in order to guide the estimator.

In the Bayesian framework, our prior view about the distribution of g
also determines whether we end up with ridge regression or some other
type of shrinkage. If the prior distribution is Laplace instead of normal,
we obtain something close to the lasso. Figure 2.3 provides an example
to compare the normal distribution (dashed line) with the Laplace dis-
tribution (solid line). Compared to the normal distribution, the Laplace
distribution has more mass concentrated around zero and fatter tails. As
a consequence, a Bayesian regression with Laplace prior leads, relative
to ridge regression, to less shrinkage of large coefficients and greater
shrinkage of small coefficients, which is similar to what the lasso does.
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Figure 2.3. Normal and Laplace distributions

The posterior mean in Bayesian regression with Laplace prior does
not exhibit sparsity, though. The lasso estimator—which yields sparse
estimates—is not equal to the posterior mean but the posterior mode.
This means that one obtains the lasso as a maximum a posteriori (MAP)
estimator of g (Tibshirani 1996). The lasso penalty parameter effectively
controls the dispersion of the prior distribution.

From Bayes’ rule we can see that the MAP estimator is closely related to
maximum likelihood estimation. The MAP estimator looks for the value
of g that is most likely given the observed data and the prior beliefs, which
means the value that maximizes the posterior probability

g=argmaxp(gly), (2.24)
g

which, by Bayes’ rule is equivalent to maximizing p(y|g)p(g), i.e., the
product of the likelihood and the prior. In contrast, the maximum likeli-
hood estimator would just maximize p(y|g), without weighting by the
prior distribution. In the case of a flat prior, the MAP and maximum
likelihood estimator coincide.

While prediction based on MAP estimates is not a proper full-fledged
Bayesian analysis—the fully Bayesian approach would use the posterior
distribution to construct a predictive distribution, not point estimates
plugged into the model, and it would incorporate prior uncertainty about
o2—the MAP estimation framework allows us incorporate prior beliefs
in a simple way. This in turn allows us to see how the lasso implicitly
incorporates prior beliefs about g.
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The same issue we discussed regarding the scaling of covariates for
ridge regression applies to the lasso as well. When we apply the lasso, we
implicitly express the view that a Laplace distribution with equal disper-
sion for each of the elements of g is the appropriate prior distribution.
If we do not think this is a plausible assumption, we need to rescale
the covariates accordingly. The off-the-shelf approach of standardizing
covariates before lasso estimation is not necessarily the right approach.

Finally, we can give cross-validation a heuristic Bayesian interpretation
as well. CV is essentially a way of estimating the prior dispersion ng from
the data. As we already discussed earlier, there is a connection between
the complexity penalty imposed by the AIC and penalty choice based on
CV. George and Foster (2000) show that there is in turn a close relation-
ship between estimation that optimizes the AIC (or related measures of fit
that impose a complexity penalty) and empirical Bayes estimation. In the
empirical Bayes approach, the prior parameters are estimated empirically
by putting an uninformative hyperprior on the prior parameters and then
looking for prior parameter values that maximize the posterior probabil-
ity. We can think of CV therefore as approximating an empirical Bayes
approach in which we estimate parameters of the prior distribution from
the data.

In summary, regularization has a Bayesian interpretation as the expres-
sion of prior knowledge about model parameters. Even if we do not
formally follow a full Bayesian approach, we can use the Bayesian inter-
pretation to bring domain-specific knowledge to bear on the learning
problem. Preprocessing of data (e.g., scaling), or the specification of
penalties (e.g., which kind of norm of the parameter vector to penal-
ize), implicitly expresses prior views. The Bayesian interpretation can help
us make these choices in a way that is appropriate for the specific ML
problem we intend to tackle. In the next chapter, we examine properties
of typical prediction problems in asset pricing and what these proper-
ties tell us, through a Bayesian lens, about appropriate preprocessing and
specification choices.



Chapter 3

SUPERVISED LEARNING IN ASSET PRICING

TaE sUPERVISED ML methods we reviewed in Chapter 2 are potentially
valuable additions to the toolkit in asset pricing. Many prediction prob-
lems in asset pricing are of high-dimensional nature in that a large number
of observable variables could have useful predictive information. For
example, in stock return prediction a huge number of variables could
potentially be relevant as predictors. Firm characteristics from accounting
data, signals extracted from textual information in corporate disclosures,
variables summarizing the history of price and trading volume, informa-
tion in media reports, and many other variables could potentially contain
predictive information.

Until recently, much of the existing literature in asset pricing has
dealt with this high dimensionality by imposing ad hoc sparsity. Rather
than considering large numbers of predictors simultaneously, researchers
often consider small sets of predictors in isolation. For example, when
researchers investigate a new predictor variable, a common approach in
the academic literature is to evaluate whether the variable has marginal
predictive information relative to a small “standard” set of firm char-
acteristics, for instance, those used in the factors models of Hou, Xue,
and Zhang (2015) and Fama and French (2015) (size, book-to-market
equity, investment, profitability). The problem with this approach of
considering small sets of predictors in isolation is that there could be sub-
stantial redundancy among the predictors that have been discovered in
the literature.

There is no compelling economic motivation for the ad hoc sparsity
imposed in this traditional approach. Accordingly, there is a need for
approaches that can handle the high dimensionality of the prediction
problem without imposing ad hoc sparsity. ML methods are well suited
for this task, but straight off-the-shelf application of these methods is
unlikely to fully exploit their potential. Asset pricing applications are
in important ways different from the applications, often in the technol-
ogy sector, for which the ML methods have originally been developed.
Table 3.1 lists some of these differences. Of course, these distinctions are
not always so clear-cut, but in many cases they will be relevant to some
degree.
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TaBLE 3.1
Differences between typical ML and asset pricing applications

Typical ML Application  Asset Pricing

Signal-to-noise High Very low

Data dimensions ~ Many predictors, Many predictors
Many observations Few observations

Aggregation level Individual outcomes Portfolio outcomes

of interest

Prediction error  Statistical nuisance Important determinant
covariances of portfolio risk
Sparsity Often sparse Unclear

Structural change None Investors learn from

data and adapt

Perhaps the most important difference is in the signal-to-noise ratio in
typical data sets. In many typical ML applications, the algorithm can be
trained with data in which the true outcomes are known. For example,
in an image classification task like the one we discussed in Chapter 1,
a training data set would consist of images whose true classification is
known. Sticking to the example we discussed in Chapter 1, if the task is
to classify images into the classes {hot dog, not hot dog}, we would train
the algorithm with images that are correctly labeled as “hot dog” or “not
hot dog.” In contrast, in a return prediction application, a training data
set would only be able to feed the algorithm the realized returns, 11,
of some assets, not their expected return, E;[r;11]. The expected return
is unobservable. All we can see is the realized return as a noisy signal
about the expected return. And in typical asset return data sets, variation
in E,[r;,1] across assets or across time accounts only for a small share of
the total variance of realized returns. As a consequence, the signal-to-noise
ratio is very low.

The low signal-to-noise ratio problem is further compounded by the
limitations of the data available to train models. Historical databases of
asset returns only cover several decades. It may be tempting to think
that high-frequency data can help to increase the number of observa-
tions by chopping return measurement periods into finer intervals. But
this typically does not help for estimating E;[7;11]. Unless the predictable
component of assets’ returns is changing at high frequency—which seems
implausible, unless we are trying to capture some market microstructure-
induced predictability—we do not gain much, in terms of statistical
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power, by increasing the measurement frequency. This is related to the
observation in Merton (1980) that increasing the measurement frequency
does not yield more precise estimates of expected returns. Thus, one way
or another, we have to live with the limited returns data availability.

In asset pricing, unlike in many typical ML applications, we are not
necessarily interested in obtaining accurate predictions of individual out-
comes. For example, in stock return prediction, we are not necessarily
interested in predicting individual stocks’ returns, but rather in construct-
ing a portfolio with good risk-return properties. Whether methods that
deliver the most accurate return forecasts at the individual stock level also
automatically give us the best-performing portfolio once we aggregate
across stocks is an open question that does not have an obvious answer,
as we will see later in this chapter.

Because of this portfolio perspective in many asset pricing applications,
we are also inherently more interested in the covariance properties of pre-
diction errors than the data scientists working on typical ML problems.
After all, in a setting with many assets, covariances of return predic-
tion errors determine much of the portfolio volatility. And this portfolio
volatility plays a big role in determining the risk-return properties of the
portfolio. Properties of error covariances could matter at all stages of an
ML application in asset pricing, starting with the question of what the
optimal ML algorithm is, how to regularize it, how to evaluate predictive
performance, and how to use its output for portfolio construction.

As we discussed in the previous chapter, for ML algorithms to work
well, it is important to bring in prior knowledge about the nature of the
prediction problem and the properties of the data. For regression prob-
lems, one such property is the degree of sparsity of the model. As Hastie,
Tibshirani, and Wainwright (2015) emphasize, sparse models seem to do
well in many applications, including genomics, image classification, tex-
tual analysis, and many others. In many of these applications, there are
prior reasons to expect sparsity. For instance, in image classification, some
regions of an image may simply be irrelevant for the classification task.
Similarly, in analysis of genetic factors that predict a disease, a large num-
ber of candidate genes may have no relationship to the disease whatsoever.
In asset pricing, however, it is not so clear, a priori, that a sparse model
describes well how the data are generated. For example, in return predic-
tion with accounting variables, what would be the justification for us to
assume, before looking at the data, that a substantial number of balance
sheet variables are likely to be completely irrelevant for return predic-
tion? Wouldn’t it be more plausible that some are more relevant, others
less—perhaps because they are all different noisy signals of some underly-
ing unobservable factors—but few are probably, a priori, of exactly zero
relevance?
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Finally, a fundamental difference between asset pricing and standard
ML applications is that the asset prices that we feed into a learning algo-
rithm are the outcome of investment decisions (by humans or machines)
that are themselves informed by past data. As a consequence, the under-
lying processes generating the returns are unlikely to be stationary. For
example, suppose a particular variable x is a good forecaster of returns
in time periods leading up to some time #. At time ¢, investors discover
this predictability and trade on it aggressively, with the consequence that
the return predictability disappears in subsequent periods. Consider an
analyst at time T >t who studies the predictability of returns with a
data set that extends until T, but also includes time periods prior to ¢.
The analyst operates under the assumption that there is a stable under-
lying return-generating process that an ML algorithm can approximate.
The trained algorithm in this case is unlikely to yield useful return fore-
casts at time T or later. The training data includes observations that
have been rendered obsolete by the fact that investors have discovered
the predictability associated with this variable x. In many typical ML
applications, this type of problem does not exist because the data are
generated in a stationary environment. There are no endogenous mecha-
nisms whereby availability of data and its use in decision making leads to
a subsequent change in the properties of the data. For example, return-
ing to our image classification example with hot dogs, the hot dogs are
not going to change shape or color in response to the analysis of hot dog
image data. Perhaps for this reason, there is not much guidance yet from
the ML literature on how one could adapt ML algorithms to deal with
the structural changes over time that are likely to show up in asset price
data.

In this chapter, we use a simple return prediction problem to illustrate
in more detail some of the specific issues that arise when we apply ML
methods in asset pricing. Fundamental questions, such as how to mea-
sure predictive performance, how to preprocess data, how to regularize
estimators, and how to deal with structural change, are still largely unan-

swered. The goal of this chapter is to outline the challenges that need to
be addressed.

3.1 ExAMPLE: CROSS-SECTIONAL STOCK RETURN PREDICTION

Return prediction plays a central role in the asset pricing literature.
Academic researchers use return prediction regressions to study the
determinants of risk premia and the degree of market efficiency. In quan-
titative investment management applications, return prediction models
provide an important input for the design of investment strategies.
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In this chapter, we look at a simple return prediction model for stocks
that uses only past returns as predictors. A model with such a limited
set of inputs is not meant to be representative of the sort of model that
one would need to estimate in order to build a well-performing invest-
ment strategy in today’s markets. A well-performing strategy based on
such easily available inputs would be low-hanging fruit—but this fruit
has likely been picked already quite a while ago. For our purposes here,
an exploration of a simple returns-based prediction model with historical
data is useful for illustrating some of the issues we have to tackle if we
want to adopt ML techniques in asset pricing.

At a general level, the goal of return prediction regressions is to approx-
imate conditional expected returns, which means that we are trying to find
the function f(.)

E7j 41151 = f (xir) (3.1)

that maps observable asset-level characteristics x;; into expectations of
returns conditional on characteristics. We focus here purely on predicting
cross-sectional differences in returns and so we can think of the returns of
an individual stock, 7;, as expressed relative to a market index return. In
the next chapter, we will look at a broader set of predictor variables, but
here we start with a set of predictors composed exclusively of functions of
past realized returns of stock i. Even within this restricted set of predictors,
it is easy to come up with a large number of predictor variables, and
hence a fairly high-dimensional prediction problem, if one doesn’t want
to impose ad hoc sparsity restrictions on the model.

Specifically, we analyze a model where 7;,41 is a monthly stock return
and f(x;,) is a linear function of 120 lags of the stock’s own past monthly
returns, past returns squared, and past returns to the third power. The
second and third power terms allow for possible nonlinearity in the rela-
tionship between past returns and future returns. To avoid contamination
with microstructure-induced biases and very short horizons, we skip the
first lag. Thus, we have the regression

119 119 119
2 3
Tip+l = E berip i+ E CkTipp t E dir}s gt (3.2)
k=1 k=1 k=1

with a total of 3 x 119 =357 predictor variables.

Each month ¢, we use all stocks in the Center for Research in Security
Prices (CRSP) database except small stocks that have market capitaliza-
tion below the 20th N'YSE percentile and price lower than one dollar at
the end of month # — 1. We exclude stocks below this threshold to make
sure the results are not driven by extremely small and illiquid stocks. For
the dependent variable 7; .1, we use returns from January 1970 to June
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2019. We demean the dependent variable and all explanatory variables
month by month to focus purely on cross-sectional variation (which is
why the regression (3.2) does not include an intercept term). In addition,
we cross-sectionally standardize all predictor variables to unit standard
deviation each month. We weight the observations each month such that
the regression gives equal weight to each month in the sample. In an asset
pricing application with an unbalanced panel of stock returns, this is a
natural weighting scheme because the mean return of a portfolio strategy
(which might include a different number of stocks each month) would
also give equal weight to each period.

We use the ridge regression estimator (2.7) that we discussed in the
previous chapter. The penalty hyperparameter is estimated using leave-
one-year-out CV. That is, the CV folds are contiguous blocks of monthly
cross-sections that comprise a calendar year. This means that we compute
the estimates using all but one year of the sample as training folds, we cal-
culate the predicted returns in the left-out validation year, and we record
the resulting RZ. We then repeat with a different left-out year and again
record the R?. We repeat until each year of the sample has been left out
once. At the end, we average the R? across all left-out years and we search
for a penalty value that maximizes this cross-validated R?. This leave-
one-year-out approach of constructing the folds is consistent with our
data-weighting scheme that gives equal weight to each calendar period in
the estimation.

To demonstrate that the ridge regression estimates recover useful infor-
mation, we first inspect the estimated regression coefficients. The ridge
regression automatically detects many prominent predictability patterns
that have been documented in the existing literature for roughly this sam-
ple period or parts of it. Panel (a) of Figure 3.1 shows the estimates for
the by, coefficients in (3.2), i.e., the coefficients for the first-order terms of
lagged returns. It may not be apparent at first sight, but on closer look
one can see that in just one estimation, the ridge regression recovers sev-
eral major anomalies related to past returns: the positive coefficients up to
lags of 12 months capture momentum as in Jegadeesh and Titman (1993);
the plot also shows that continuation of recent returns is concentrated in
lags 6 to 12, as pointed out in Novy-Marx (2012); the mostly negative
coefficients for lags beyond 12 months reflect long-term reversals as in
DeBondt and Thaler (1985). Strikingly, there are also large positive coef-
ficients at lags equal to multiples of 12. This pattern is the momentum
seasonality reported by Heston and Sadka (2008). This effect shows up
all the way back to lag 120. While these effects have been documented
separately in different studies, they can all be captured in one go with a
single regression here.
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Since the covariates are standardized, we can easily interpret the mag-
nitudes of the coefficients. For example, the “momentum” coefficients in
lags t —2 to t—12 lags sum up to around 0.15%. This means that a
positive one-standard deviation move in each of the past 12 months trans-
lates into an increase in the predicted return in month # of slightly above
0.15%. Annualized, this would be close to 2%. For comparison, momen-
tum is often analyzed with decile portfolio sorts in which top and bottom
decile average returns are differenced. Such a high-minus-low decile port-
folio difference represents roughly a three standard deviation dispersion
in lagged returns and the average annualized return spread is often in the
ballpark of 6-8% depending on the sample period, which is therefore
consistent with our estimates here.

As the much smaller magnitude of the coefficients in panel (b)
shows, the predictability associated with lagged squared returns appears
to be weaker. While the smaller magnitude of coefficients is suggestive
of a weaker effect, it is not obvious, though, that the cumulative effect
is weaker. Since squared returns are positively autocorrelated, it is more
likely that a stock ends up with a series of past return observations con-
sistently in the tails of the distribution than that it ends up with a series
of consistently positive or consistently negative returns. The effect of the
many small coefficients for squared returns therefore can add up to a
non-negligible effect size. That the coefficients are predominantly pos-
itive means that stocks with many lagged returns in the tails on both
sides of the distribution, especially for longer lags, tend to have higher
returns going forward. Put differently, stocks with a history of high lagged
volatility tend to have higher returns.

Panel (c) reports the regression coefficients for the 119 lags of returns
raised to the third power. There is a tendency for the coefficients to
be negative, which indicates that a history of negative tail realizations
in returns is associated with higher future returns, but the coefficients
are quite small. And unlike for squared returns, returns raised to the
third power have little autocorrelation, which means that the cumulative
effects are likely quite small relative to those of the simple past returns in
panel (a).

The coefficient estimates in Figure 3.1 already hint at two important
observations about the properties of asset price data that are relevant to
our thinking on how to apply ML methods in this area. First, the signal-
to-noise ratio is extremely low. While the return predictability implied
by the magnitudes of the coefficient estimates in Figure 3.1 is in line
with what has been found in the asset pricing literature elsewhere, the
predictable component of returns accounts for only a very small frac-
tion of total return variance. For example, the spread of around 2% in
annualized predicted returns associated with a one-standard deviation
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TaBLE 3.2
Return prediction with a polynomial of lagged returns

CV portfolio return 7y
y ISRZ CVR? Mean S.D. Sharpe Ratio

Method Scaling ~ CV criterion (1) (i1) (iii) (iv) (v) (vi)
OLS Equal n/a 0 522 —-1.18 412 11.60 0.35
Ridge Equal R? 2.25 2.63 0.84 420 13.85 0.30
Ridge Unequal R? 1.40 2.69 1.18 4.55 12.47 0.37
Ridge Unequal E[rp] 3.11 1.75 0.89 4.58 12.94 0.35
Lasso Unequal R? 0.00028 3.55 0.84 425 11.79 0.36

move in lagged 12-month returns is small relative to the typical annu-
alized standard deviation of market-adjusted individual stock returns in
the ballpark of 40% or more. Second, nonlinearities are subtle. While
the inclusion of second and third powers of past returns is a crude
way of dealing with nonlinearities and there are many other types of
potentially relevant nonlinearity, such as interactions between covari-
ates, that we have not explored here, strongly nonlinear effects do not
jump out of the data in an obvious way. To the extent they exist, one
has to look for them with more sophisticated tools in order to find
them.

Table 3.2 presents information on the predictive performance of the
model. All numbers are annualized.! The second row presents the esti-
mates for the ridge regression. For comparison, the first row shows the
same statistics for an OLS regression. For now, we focus on the R? mea-
sures in columns (ii) and (iii). We will discuss the other columns later in
this chapter. Column (ii) shows the in-sample (IS) R? in the training data.
The IS R? of ridge regression is just about half as big as the IS R? of OLS.
However, the cross-validated R* from leave-one-year-out cross-validation
(CV) in column (iii) shows that much of the seemingly good in-sample fit
of the OLS regression is in fact coming from overfitting noise: the CV R?
of OLS takes a negative value of —1.18%. In contrast, the ridge regression
produces a positive CV R? of 0.84%. This illustrates that regularization
is important for achieving good predictive performance.

IThe R? numbers are annualized by multiplying the monthly numbers by 12, which is a
good approximation as long as the predictable component is a small portion of total return
variance.
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These R? numbers again highlight the low signal-to-noise ratio in stock
return prediction applications. Even though CV R? of around 1% are eco-
nomically substantial—the implied standard deviation of the predictable
component of annual returns is about 4%—the predictable component
only accounts for a very small part of total return variance.

Since we estimated the hyperparameter y by maximizing the CV R? on
the validation folds, the CV R? reported in Table 3.2 are not fully out-of-
sample. Out-of-sample R? on test data sets used neither in model training
nor hyperparameter estimation are likely somewhat lower. Later in this
chapter, we look at such out-of-sample R%. But even leaving this issue
aside for now, there are questions about the suitability of R* measures in
predictive performance assessment and as objectives in hyperparameter
optimization in an asset pricing application. We look into these issues
first.

3.2 PREDICTIVE PERFORMANCE ASSESSMENT

ML applications often focus on minimization of the sum of squared pre-
diction errors. Correspondingly, the sum of squared prediction errors, or
functions of it like the R?, are often used as a predictive performance mea-
sure. It may seem natural that minimization of individual stock return
prediction error is an appropriate objective in a stock return prediction
application, too.

However, it is not obvious that this is the right approach in an asset
pricing setting. For example, in a portfolio management application, the
ultimate goal often is not to predict returns on individual assets but rather
to construct a portfolio that earns a high return relative to its risk out-of-
sample. Similarly, when researchers study risk premia or market efficiency,
they may be more interested in the risk-return properties of portfolios
that aggregate the returns of groups of securities rather than of individ-
ual security returns. Methods that yield better predictions of individual
security returns, in the sense of a higher predictive R%, do not necessarily
yield better portfolios in terms of standard metrics such as the portfo-
lio’s Sharpe ratio. Therefore, the fact that ridge regression in the second
row of Table 3.2 produces a higher CV R? than an OLS regression does
not necessarily mean that a portfolio constructed to exploit the predicted
return differences between stocks based on the ridge estimates would
perform better on the cross-validation folds than one based on the OLS
estimates.

Column (iv) in Table 3.2 illustrates this. This column shows the annual-
ized cross-validated mean return of a portfolio in which individual stocks
are weighted by the predicted returns from the estimated regression. In
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each month ¢ in a validation fold, we weight all stocks with the weights
vector

1
N |~
Zizl |,U~i,z—1|

which is proportional to the vector of predicted returns fi,_; that we
construct from the model estimated on the training folds. Some of the
elements of fi,_; are positive—a long position—and some are negative—
a short position—and they sum to zero. Scaling by the summation term in
the denominator fixes the size of the portfolio to be half a dollar short and
half a dollar long. As we did before for the CV R?, we use leave-one-year-
out CV, but this time for the portfolio return r,; = ®,_;7; instead of the

W1 = i1, (3.3)

R2. Averaging across time, we obtain the cross-validated mean portfolio
return (for penalty parameter tuning, we still stick to maximizing the CV
R? for now).

As column (iv) shows, the portfolio formed based on ridge regression
estimates in the second row achieves a slightly higher CV mean return
(4.20%) than the portfolio formed based on OLS regression estimates in
the first row (4.12%). But this difference is surprisingly small given how
big the difference is in the CV R? of these methods. In other words, even
though OLS produces a negative predictive R> on the cross-validation
folds, a portfolio formed based on the OLS regression predictions pro-
duces a surprisingly high mean return on the cross-validation folds. More-
over, as column (v) shows, the portfolio based on OLS estimates actually
has a lower return standard deviation than the portfolio constructed from
ridge regression estimates in the second row. As a consequence, the OLS
portfolio earns a higher CV Sharpe ratio (ratio of mean return to standard
deviation) than the portfolio based on ridge regression estimates.

To understand this discrepancy between R? measures of predictive
performance and portfolio performance metrics, we now look into the
determinants of these measures in an OLS regression framework. In the
next section, we then look at the effects of regularization on these metrics
and we ask whether this analysis changes our conclusions about how we
should perform hyperparameter tuning.

Consider returns on N stocks that are generated each period as follows:

Ty =M+ &t
n=Xg. (3.4)

Here 7, is an N x 1 vector of returns in period #, X is an N x K matrix of
predictor variables, and & is a vector of IID shocks with diagonal covari-
ance matrix X = Ino2. Since we will focus on cross-sectional differences
between stocks, we assume that the returns in 7, are market-adjusted,
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i.e., the returns are expressed in excess of the returns on some market
index.?

Now suppose that we have estimated a return-prediction model by
regressing average returns, 7 = % Y 7171, observed from =1 up to some
time ¢ = t, on the K covariates in X with OLS. This yields predicted returns
=X (X'X)"1X'7, which we can decompose as

p=p+u, u=XXX"'XG, (3.5)
where & = % Y /_1 &:- Note that E[u] =0 and E[uu'] = %X(X’X)_lX’oz.
We now calculate the OOS R? in explaining returns in a validation data

set from t =17 + 1 to t="T. With total and unexpected average returns in
the validation periods of

1 & 1 &
o= Dt EBv=—— ) e (3.6)
t=1+1 t=1+1

we have 7, =u +&, and the prediction error is 7, —fil=p+&, — it =
&, — u. Hence we get the OOS R?

R E—wE—w
00os v+ 1) (Ey+p)

O =i il (3.7)
I\lI‘L/IL+ Ter-Z I\lfu“/”'—i_ Tlraz

To get the approximation in the second line, we replaced terms like
(1/N)&,u, (1/N)u'u, and (1/N)&| &, with their expected values. We will
use a similar approximation repeatedly in this chapter.

Looking at (3.7) we see that the OOS R? is negatively affected by the
third term, which is due to the effect of estimation error. This estima-
tion error component would vanish with large training set size 7. But if
7 is sufficiently small, a large estimation error can easily turn the OOS
R? negative, even though the in-sample R? in the training data is always
positive.

Rather than the R?, an investor or a financial economist studying asset
prices might be more interested in the return of a portfolio strategy that

2That X is constant through time—unlike the past-return based predictors in our empiri-
cal example—is mostly without loss of generality. This is easiest to see in the case of just one
predictor that has been transformed into ranks. In this case, we could re-sort the rows of the
predictor vector and 7; each period such the re-sorted predictor vector is exactly the same
each period. However, if not only cross-sectional ranks, but also the values of the predic-
tors matter for expected returns such that u; 1 =X;_1g would be time-varying even after
re-sorting the rows of the predictor vector and 7;, the constant X cannot capture this.
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exploits cross-sectional differences in expected returns. We consider a
portfolio with weights as in (3.3), but with a different scaling factor:

o= 4. (3.8)

~T A

Multiplying estimated expected returns with the ratio 1/y/ft/ft ensures
that the weights have an interpretable scale by fixing the sum of squared
weights to 1. For the calculations we do here, this is more convenient than
scaling by the sum of absolute portfolio weights, although the portfolio
then does not have the interpretation of being exactly half a dollar long
and half a dollar short.

Given our assumption here that returns are cross-sectionally uncor-
related, the weights of the mean-variance efficient portfolio—i.e., the
portfolio that maximizes the Sharpe ratio of mean return to return
standard deviation—are proportional to the vector of expected returns.?
Therefore, in this special case, the weights @ also represent the (estimated)
weights of the mean-variance efficient portfolio.

The portfolio with weights @ earns a per-period return out-of-sample
(i.e., for periods t > t) with expected value and variance of

w'pn
/,L/,L+§02

Therefore, the squared Sharpe ratio in the validation period is

E[@7|0)> (T— r) (')

var(@'7,|®) 2 ) wnt ggz'

1
E[@7,|®] ~ var(@'ry|®) = roz. (3.9)

T —

(3.10)

o

In this case, with a diagonal covariance matrix, the squared Sharpe ratio
is approximately proportional to the squared expected return of the port-
folio in (3.9). So we can focus our discussion for now just on the expected
return in (3.9).

Comparing (3.9) with (3.7), we see that, just like the OOS R?, the
expected portfolio return is negatively affected by higher estimation error:
the expected return is increasing in the training data set size t. The reason
is that when the training data set is smaller and hence estimation error is

3The mean-variance efficient portfolio has weights proportional to =1 . If one rescales
the weights such that their sum of squares is unity, the weights are ——L— %=1 This
wWE2p
portfolio achieves the maximum Sharpe ratio, i.e., the maximum ratio of expected portfo-
lio excess return to portfolio return standard deviation. We will come back to this special
portfolio repeatedly throughout this book.
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larger, then ft, which is used to construct the portfolio weights accord-
ing to (3.8), has more noise relative to the signal w. This leads to larger
absolute magnitudes of the elements of ji. As a consequence, the portfolio

weight denominator 1/+/jt’ jt is larger, which reduces the expected return
of the portfolio. The intuition is that for a portfolio where we basically
fixed the total exposure to long and short positions, more noise in port-
folio weights means that we are using part of this investment capacity to
trade on noise rather than on signal.*

Based on this analysis so far, one might conclude that since both the R?
and portfolio mean return are negatively affected by estimation error, the
R? is a good indicator of portfolio performance. Unfortunately, once we
move away from the simple £ =1Iyno? case, this may no longer be true.
The portfolio Sharpe ratio in this case depends on the properties of X,
and R? measures are silent about these properties.

But even if we leave the issue of the covariance matrix aside, there are
other reasons why R? and portfolio performance measures can give con-
flicting messages. As we saw in (3.2), moving from unregularized OLS
to regularized ridge regression had a large effect on the CV R?, but led
to only a minor improvement in the mean portfolio return. This brings
up two questions. First, how does regularization affect these predictive
performance measures? Second, are off-the-shelf ML approaches to reg-
ularization appropriate in an asset pricing application? The objective in
penalty hyperparameter tuning is typically to maximize the cross-validated
R?. But improving the R? is apparently not necessarily the same thing as
improving portfolio performance. For thisreason, we first look more closely
into the effects of regularization on portfolio performance before we look
at consequences of a non-diagonal covariance matrix of returns.

3.3 REGULARIZATION AND INVESTMENT PERFORMANCE

In this section, we examine the effects of regularization on the OOS R?
and portfolio performance in a validation data set. As before, we use
ridge regression as an example, but the lessons we draw from this anal-
ysis apply more broadly to other forms of penalized regression like lasso
as well.

Suppose that we estimate the parameter vector g in (3.4) with a ridge
regression

g=(X'X+yIx) ' X7 (3.11)

41f one instead left the weights unscaled and just equal to fi, the expected return would be
approximately unaffected by the estimation error, but the variance would be higher, leading
to the same detrimental effect on the squared Sharpe ratio.
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In this case, regularization takes the form of shrinkage and it kicks in if
y > 0. Suppose further that X’X =1, e.g., because we orthonormalized
the covariates before running the regression. Then (3.11) simplifies to

o6=—X'7, 3.12
g 11y (3.12)
and . . .
il :XA:—XX/;’Z— +_u’ 3.13
1+y 1+yu 1+vy ( )
where

u=XX5. (3.14)

The R? in the validation data is now a modified version of (3.7) because
of the shrinkage effects. We obtain

1 .2 1
RE A~ 1 =g v N
oos ™+ o
awp+ o2 \A+y)? | Lwp+ o2

12
—( ! 2)1 R (3.15)
A+ ywn+ 702

We can use this expression to evaluate the effects of shrinkage on the OOS
R?. The last term is due to estimation error and it subtracts from the R2.
The shrinkage induced by y > 0 reduces the magnitude of this term. This
raises the OOS R2. But shrinkage also introduces the second term because
it biases ft away from u. Greater shrinkage increases the magnitude of this
term, which in turn reduces the OOS R2. Whether the combined effect of

shrinkage raises or lowers R%)os depenclls on the magnitudes of y, % o,

T

and %02. The larger the noise variance 2o relative to the signal variance

%u’u, the greater the Rzoos-maximizing y.

But investors do not necessarily care about the OOS R? directly. How
would such scaling affect the out-of-sample performance of a portfolio
strategy formed based on the estimates it as in (3.8)? It turns out that
shrinking estimates by constant factor ﬁ in (3.13) leaves the weights
®= \/;T it unchanged! As a consequence, expected returns, variance, and

i
squared Sharpe ratio will remain unchanged as well.’ This is an important
lesson: improvement of the OOS R? is not a guarantee that OOS portfolio
performance measures improve, too.

STf one used unscaled weights instead, ® = ji, the expected return would fall, and the
portfolio return standard deviation would fall by the same factor, leaving the squared Sharpe
ratio unchanged.
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That improvement in OOS R? does not necessarily translate into
improved portfolio performance is true even in this simplified setting
with uncorrelated regression residuals. Therefore, this disconnect between
OO0S R? and portfolio performance is not simply due a consequence of
the OOS R?’s neglect of prediction error covariances in summarizing the
predictive performance. In fact, we would get the same result with a gen-
eral covariance matrix X. In this case, plug-in estimates of mean-variance

efficient portfolio weights would be @ = %Z_l . It is easy to see
i

that the effects of shrinking ft by a scalar factor would cancel out in these
weights, leaving no effect on portfolio performance measures.

This can help us understand why moving from OLS to ridge regres-
sion in Table 3.2 had a big effect on the CV R?, but not on portfolio
performance measures. We used standardized covariates in these regres-
sions, which means that the covariates do not have any heterogeneity in
their cross-sectional dispersion. And the covariates are not highly corre-
lated with each other. This means the empirical setting in Table 3.2 is
such that X'X is close to proportional to the identity matrix—just like
in our analysis in this section so far. In this case, ridge regression shrinks
all coefficients about equally. This helps the R?, but not portfolio mean
returns and the Sharpe ratio. For shrinkage to have an effect on portfo-
lio performance metrics, shrinkage has to operate in a more subtle way
than by just shrinking all elements of the estimated expected return vec-
tor by a constant factor. In the case we considered so far, with X'X =
Ik, shrinkage scales back not only the estimation error in the weights
but also, to the same degree, the expected return signal component in
weights.

For shrinkage to potentially improve portfolio performance, it has to
be the case that X’X is not proportional to an identity matrix. Consider,
for example, the case where

1
X=QyA} (3.16)

for some N x K matrix Qg and a diagonal matrix Ax with diagonal
elements ;. To keep notation simple, we still assume that predictors
have been orthogonalized, but without scaling them to have equal cross-
sectional variances. This means here that the columns of Qy are orthonor-
mal, ie., QxQx =1Ik, but X'X = Ak, so the diagonal elements of Ag
determine the cross-sectional dispersion of the covariates. Unlike in the
X'X =1Ig case, we can now have covariates that differ in terms of their
cross-sectional dispersion.

_1
In this case, OLS would yield e.stimates Sors=Ag’ Q}(’_’ and pr?dicted
returns fLors =Xg€ors- The predicted returns from a ridge regression are
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1
R=X (Ax+yIx) ' AZQk7

:X(1K+yA,;1) ZoLs- (3.17)

Comparing with ftorg, we can see that ridge regression, with y > 0, now
applies shrinkage to different degrees depending on the 1; associated
with column j of Q. Predictors with low 2;, which means predictors

that have little cross-sectional dispersion, have large entries in the Alzl
matrix, which means that their coefficients get shrunk more than those of
predictors with high A;. Since they have little cross-sectional dispersion,
the effects of these low-2; predictors on expected returns are difficult to
estimate. Therefore, it may be beneficial to downweight this covariate
because it makes a large contribution to estimation error. If the benefits
from reduced estimation error outweigh the costs of downweighting the
expected return signal in this covariate, shrinkage can improve portfolio
performance.

Since shrinkage in this case is not simply scaling all coefficients by the
same scalar, it is possible that the Sharpe ratio in the validation period
could be improved through shrinkage. With ¥ =Ino? and portfolio
weights @ = \/% i, we get expected return and variance of

i

g' Ak (IK + J/Alzl) g

AL =

Elw 7, |w]~

3

g'Ak (IK—|— yAIzl)_zg—l— %02 tr [(IK+ yAF)_Z]

1
var(/'7, i) = = o2, (3.18)
— 7T

We can rewrite the expected return as

2
K gj'Aj
NS = A Zl:l 1+V}‘f_1
Elw 7, |w]~ (3.19)
K & 1 2K 1
Z;:l (1+V)”;1)2 + T Z]:l (l+yk;l)2

The second term in the denominator reflects the effect of estimation error.
Shrinkage with y > 0 shrinks the magnitude of this term. However, it also
shrinks the term in the numerator. Which effect dominates depends on
the properties of g and Ag. Increasing y leads to a large reduction in the
estimator error term in the denominator if there are some ; that are very
small. This is due to the fact that if some A; are small, ridge regression
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shrinks these components the most, which reduces estimation error. The
cost of this increased shrinkage is the forgone return prediction power
as captured by the numerator. But this cost is small if g]-zkj, i.e., the pre-

dictable return variation associated with this covariate, is not high. In this
case, the relatively small cost of forgone predictive power is worth paying
given the benefit from reducing estimation error.

Since the variance of the portfolio return is unaffected by shrinkage,
any improvement in the expected return would also translate into an
improvement in the Sharpe ratio. Hence, for shrinkage to improve port-
folio performance relative to unregularized OLS regressions in a setting
with cross-sectionally homoskedastic and uncorrelated returns, as well
as orthogonalized covariates, the covariates must differ in their cross-
sectional dispersion. Only then will ridge regression shrink the coefficients
of different covariates to different degrees, which is required for shrinkage
to have an effect on portfolio performance measures.

More generally, shrinkage can improve portfolio performance if there
is heterogeneity in the covariates’ relative contribution to expected return
and to estimation error. Heterogeneity in contributions to risk is another
relevant dimension that we have not considered yet. Shrinkage must affect
undesirable contributions (estimation error, risk) more than desirable
ones (expected returns).

A somewhat similar conclusion applies for the lasso. But in the lasso
case, heterogeneity in the magnitudes of the true g; coefficients can be an
additional reason why regularization can affect portfolio performance.
Even if there are no differences in the cross-sectional dispersion of the
covariates, the lasso would set to zero coefficients whose OLS estimates
are close to zero (recall our discussion of lasso shrinkage in section 2.2.1).
Therefore, heterogeneity in the g; could also induce heterogeneous shrink-
age effects that improve portfolio performance.

Returning to the ridge regression case, the results of our analysis so far
still do not give us much guidance. What does it really mean for some
covariates to have lower cross-sectional dispersion than others? In a typ-
ical asset pricing application, we could rescale the predictors in arbitrary
ways. For example, predictors are often expressed as portfolio ranks, or
cross-sectionally standardized to unit standard deviation. This is precisely
what we have done in the return prediction regressions in Table 3.2. With
such standardization, the cross-sectional dispersion of each predictor is
identical. If predictors are also uncorrelated cross-sectionally, ridge regres-
sion shrinks all coefficients equally, with no effect on portfolio Sharpe
ratios. But why this type of scaling and not a different one?

Standard ridge and lasso statistical packages often standardize vari-
ables before estimation by default. Our discussion here makes clear
that this is not an innocuous data preprocessing step because it affects



3.3. REGULARIZATION AND INVESTMENT PERFORMANCE 49

what is being shrunk! If the covariate second moment matrix is diago-
nal, standardizing the covariates guarantees that there will be no effect
on portfolio performance metrics compared with OLS! Standardizing
therefore has a substantive effect on the estimation outcomes.

More generally, the outcomes of the ridge regression prediction and
portfolio formation exercises are not invariant to rescaling covariates:
we can redefine covariates and coefficients in (3.16), without changing
the assets’ expected returns, in a way that changes the ridge regression
outcomes. For example, continuing with our example from above, if we

1

1 _1
redefine the regression coefficients as A g g and the covariates as XA > =
Ok, ridge regression yields

. _ _ 1 .
=0 Ik +yIx)™ Ok =1 X&ors: (3.20)

1
where g7 g= A2 Qi is the OLS estimator from the regression of 7 on
the original covariates X. Thus, we are back to having a constant shrink-
age factor that affects all elements of it equally! In this case, changing y
has no effect on the mean return and Sharpe ratio of the portfolio formed
based on ft.

So if arbitrary rescaling of covariates can affect the properties of ridge
regression shrinkage, how should we rescale the covariates? This is one of
the places where we need to bring in prior knowledge about the properties
of the data that we are training the model on. If we have prior reasons to
think that some covariates might be less important than others, and might
just contribute a lot to estimation error rather than return prediction sig-
nal, then we could rescale such that these likely less important covariates
have a lower cross-sectional dispersion.

For this purpose, it is useful to recall from Section 2.4 the interpreta-
tion of ridge regression as a Bayesian regression with normal prior for
the regression coefficients. Ridge regression arises as a special case of the
Bayesian regression if the prior covariance matrix and residual covari-
ance matrix are proportional to the identity matrix. Put differently, if we
apply standard ridge regression, we are implicitly expressing the prior
belief that nature draws each element of g from the same distribution. In
a ridge regression, we should therefore rescale covariates in such a way
that this implicit assumption is plausible. In other words, based on what
we know about the prediction problem and the data, it should be plausi-
ble that each covariate could get a coefficient of roughly equal magnitude.
If some covariates are less important in terms of their contribution to pre-
dictable returns according to our prior beliefs, then they should be scaled
to have lower cross-sectional dispersion so it is still plausible that they
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get roughly similar regression coefficient magnitudes as the other more
important covariates.

For example, in our return prediction example, we might be skep-
tical about the presence of nonlinearities in the relationships between
past stock returns and future stock returns. This would lead us to
rescale the second- and third-order terms in (3.2) to have lower cross-
sectional standard deviation than the first-order terms. To illustrate the
effects of such rescaling, we add another rescaling step in our empiri-
cal example: after standardizing the covariates, we divide the squared
return covariates by 2, and the third-order covariates by 4. There is of
course some arbitrariness in the choice of these scaling factors, but the
purpose here is merely to illustrate that such rescaling can affect predictive
performance.

The third row of Table 3.2—labelled “unequal” to highlight the dif-
ferent type of scaling of the covariates—presents the results. One change
compared with the second row in the table is the substantially lower value
of the estimated penalty parameter y. Once the covariates are rescaled to
have unequal cross-sectional standard deviations, we need less shrink-
age to maximize the CV R?. As a consequence, even the in-sample R?
rises slightly from 2.63% in the second row to 2.69% in the third. More
importantly, the CV R? rises by more than a third from 0.84% to 1.18%
and portfolio performance measures improve: the mean return rises from
4.20% to 4.55% and the Sharpe ratio from 0.30 to 0.37. Evidently, the
prior belief that the second- and third-order terms are less important for
return prediction seems to have some validity in the data.

Finally, since we now understand that there is a clear difference between
R? measures of predictive performance and portfolio performance in the
validation periods, it is natural to ask why we even use the R? as an
objective for hyperparameter tuning. If we want to maximize portfolio
performance measures, why not target them directly in our hyperparam-
eter tuning? The fourth row in Table 3.2 shows what happens when we
do this in our return prediction example, sticking to the unequal scal-
ing that downscales the second- and third-order terms. In this version
of the ridge regression, we tune the penalty parameter to maximize the
mean return of the portfolio in the validation folds, not the R*. The con-
sequences are interesting. The estimated y of 3.11 is much higher than in
the third row where we picked y to maximize the CV R2. The IS and CV
R? are therefore both substantially lower than in the third row. Neverthe-
less, the portfolio mean return (4.58% vs. 4.55%) is slightly higher. The
Sharpe ratio (0.35 vs. 0.37) is slightly lower, though. But if one wanted
to maximize the Sharpe ratio, one could target it directly instead of the
mean return in the hyperparameter tuning. Broadly, these results suggest
that the gains from tweaking the penalty parameters by directly targeting
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portfolio performance instead of R? are quite limited, at least in this spe-
cific setting. But they also illustrate once more that R? measures can be
quite misleading as indicators of portfolio performance.

The bottom line conclusion from this section is that the effects of
regularization on R* and portfolio performance in validation data are
sensitive to the scaling of covariates. For regularization to be effective, we
need to bring in some prior knowledge about the likely relative impor-
tance of different covariates in the prediction task. This raises the question
of how we might come up with prior beliefs that can help us scale
covariates appropriately to make regularization effective. As the next
section shows, financial economics suggests links between covariances
and expected returns, and these links can help us pin down how we should
regularize.

3.4 LINKS BETWEEN EXPECTED RETURNS AND COVARIANCES

The Bayesian regression framework we discussed in Section 2.4 allows
us to tackle the question of covariate scaling by showing how economic
links between expected returns and covariances relate to regularization.
Recall that for a cross-sectional regression model 7= Xg + & with a prior
g~N(0,X,), where 7 and & are averages of 7; and &; from a sample of
size 7, and ¥ =var(e;), we get the posterior mean

1 7’1
gz(x’zlx+_zgl> X'z 17 (3.21)
T

Within this framework, we now look for a specification of X and prior
beliefs about g that are economically sensible. For this purpose, we also
need a more realistic specification of the covariance matrix. The assump-
tion that ¥ =Ino? that we worked with above is sometimes useful for
illustration, but not a realistic property of asset returns. Here we let X
have a general form. As before, we still assume that ¥ is known and does
not need to be estimated.

Economic reasoning suggests that covariates that predict returns should
be related to stock return covariances. Specifically, the link to the covari-
ance matrix should be such that if a long-short portfolio formed based
on the values of a covariate produces a substantial mean return, it should
also have substantial return volatility. For example, if small firm size pre-
dicts high returns, then a portfolio that takes a long position in small
stocks and a short position in large stocks should have substantial volatil-
ity. This requires covariance risk exposure in the sense that small stocks
co-move with each other more than with large stocks and large stocks
co-move with each other more than with small stocks. This within-group
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comovement prevents risk from diversifying away with the consequence
that a long-short portfolio then has relatively high return variance. As
Kozak, Nagel, and Santosh (2018) discuss, such links between mean
returns and covariances are predicted by a wide range of asset pric-
ing models, including ones with rational investors and ones that include
investors whose asset demand is driven by sentiment or behavioral biases.
If such links between expected returns and covariances were absent,
economically implausible near-arbitrage opportunities would exist.

To arrive at a particularly transparent result, we specify this link
between return-predicting covariates and covariances through the some-
what stark assumption that the K vectors of covariates used to predict
returns are equal to K eigenvectors of X. Let £ = QAQ’ be the eigende-
composition of X and let Qg be a selection of K columns of the orthogonal
matrix Q. We then assume that X = Qy, which implies X’X =Ix. The
assumption that covariates are exactly equal to the eigenvectors is, of
course, a strong assumption, but it will give us a particularly clear result.

Since the portfolio weights are based on eigenvectors, or principal
components, of the return covariance matrix, we label them principal
component (PC) portfolios. The PC portfolios have expected returns and
variance

E[Qkril=g,  var(Qyr)=Ax, (3.22)

where Ak is a diagonal matrix with the K eigenvalues corresponding to
the K eigenvectors in Qg on its diagonal.

We are now in a position to specify economically motivated prior
beliefs about g. For this purpose, it is useful to note that the Sharpe
Ratios associated with each of these K PC portfolio returns, 7, = Q 7y, are

Alzl/ 2 g- An assumption about these Sharpe ratios that has some economic
plausibility—more on this in the next chapter—is that high Sharpe ratios
are concentrated among PC portfolios that have relatively high variance.
Here this would mean that the Sharpe ratio vector Alzl/ 2 g is likely to take
on greater magnitudes for those elements j associated with high 2;. Prior
beliefs

g~N@O,y 'A%, O0<y<l, (3.23)

would be consistent with this reasoning because they imply prior beliefs
about the Sharpe ratio vector Alzl/ngN(O, y~1Ag). This prior distri-
bution for the Sharpe ratio vector allows for greater magnitude (positive
or negative) of Sharpe ratios for those portfolios returns in 7, = Q7; that
are based on columns of Qg (or X) associated with high ;.

Proceeding with this assumption, the hyperparameter y now has an
economic interpretation as controlling the expected squared Sharpe ratio
under prior beliefs. To see this, note that the maximum squared Sharpe
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ratio attainable from the assets is g'Q) X' Qyg. Taking expectations
under the prior distribution, we get

1
Elg'OkZ 'Oxgl =Elg'A gl = ;tr (AK). (3.24)

This expression shows that the prior parameter y controls the maximum
squared Sharpe ratio expected under the prior beliefs. If we choose a high
y in the prior (3.23) we are implicitly expressing the view that the magni-
tude of Sharpe ratio attainable from these assets is likely to be relatively
small. Under this prior view, estimates of Sharpe ratios in empirical data
are regarded as likely upward biased because of overfitted noise. Accord-
ingly, these empirical Sharpe ratios get shrunk toward zero in a Bayesian
regression. Furthermore, given a value for y, a higher maximum squared
Sharpe ratio is expected if the K PC portfolios have high return variances
and hence tr (Ag) is high.

Given the prior beliefs in (3.23), the Bayesian regression of 7 on X = Qg
in (3.21) becomes

R T N S\t S _
g=(A1<1+;A1<2> AR Qir

-1
= (1K + %Algl) 0,7, (3.25)

where Q7 is the vector of OLS estimates. Recall from (3.22) that we

can interpret ¢ here as the predicted returns of the PC portfolios. These
predicted returns are shrunk toward zero from the OLS estimates. Shrink-
age is particularly strong for PC portfolios that have low variance and
hence small entries in Ag, and big entries in Alzl, corresponding to
these portfolios. This type of shrinkage expresses the prior beliefs that
these low-variance portfolios are unlikely to be the source of high Sharpe
ratios.

The assumptions here that the covariates are exactly equal to K eigen-
vectors of X is not quite realistic. We would expect some relationship
between return predictors and eigenvectors of the covariance matrix
(again, so that a long-short portfolio formed based on the values of a
covariate loads up on covariance risk), but the relationship is unlikely to
be as tight as we assumed here. Even so, the analysis in this transparent
special case illustrates how one can use the Bayesian approach to bring
economic priors into the analysis and give an economic interpretation to
shrinkage parameters.

By setting up the regression in a Bayesian framework, we have also
removed the arbitrariness of covariate scaling. If we rescaled covariates
here, then to keep the prior beliefs about p =Xg unchanged, we would
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have to change the prior about g accordingly. For example, if we divide
covariate j by a constant ¢, we have to multiply the corresponding coef-
ficient gj in our prior by ¢, which means multiplying its variance in the
prior distribution by ¢2. As a consequence, the posterior mean of g would
remain invariant to such rescaling. We revisit these questions again in
the next chapter within a more general framework. This framework will
allow us to specify prior beliefs in an empirically plausible way.

3.5 RETURN COVARIANCES AND PORTFOLIO AGGREGATION

Covariances of prediction errors play a much bigger role in asset pricing
than in typical ML applications. If our aim is to use a return prediction
model to form a portfolio with high return relative to the level of risk,
the covariance matrix of the unpredictable component of returns plays
an important role.

While we have assumed so far that the covariance matrix is known,
in practice it must be estimated. This introduces an additional layer
of estimation errors that can lead to substantial problems in portfolio
construction. In the extreme case, if one wanted to work with thou-
sands individual stocks, finding the mean-variance efficient combination
of these stocks would require an estimate of a huge covariance matrix
with millions of elements. Estimating this covariance matrix would be
difficult without imposing substantial constraints on its functional form
or some form of shrinkage estimation applied to the covariance matrix.
Moreover, typical individual stock return data sets are unbalanced panels
that may be difficult to work with for the purpose of covariance matrix
estimation. Finally, in data sets spanning many years or decades, an indi-
vidual stock’s covariance properties are likely to change over time as the
firm’s characteristics change.

For this reason, it can make sense to first aggregate stocks into port-
folios based on the covariates of the return prediction model. If the
characteristics that we use to form portfolios are related to stocks’ covari-
ance exposures, the covariances of portfolios could be much more stable
than covariances of individual stocks. And portfolio aggregation should
help with covariance matrix estimation, at least as long as the number of
covariates is smaller than the number of assets, i.e., K < N.

What would be ideal conditions under which we can aggregate into
these portfolios, and hence get these benefits, without negatively affecting
the investment opportunities in terms of the maximum squared Sharpe
ratio? To make this more concrete, assume again, as earlier in (3.4), that
returns are generated as r =Xg + &, with a predictable component u =
Xg. Consider covariate-weighted portfolios with realized return r, =X'r,
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expected return p, =X'p=X'Xg, and return covariance matrix ¥, =
X'¥X. What are the conditions on the relationship between the covariates
in X and asset return covariances such that the maximum squared Sharpe
ratio available from individual assets is equal to the maximum squared
Sharpe ratio available from the aggregated portfolios?

Hence, we are looking for conditions under which w/'X~'p=
u;)lel;Lp, i.e.,

gX'T ' Xg=gX'X (X'=X)" X'Xg. (3.26)

A necessary and sufficient condition for this equality to hold (Amemiya
(1985), Theorem 6.1.1) is that the covariance matrix takes the form

T =XUX +U®U +o°ly, (3.27)

for some conformable matrices ¥, ®, and a matrix U such that U'X =0.
If and only if the covariance matrix is of this form, then aggregation by
X does not lead to a loss of any investment opportunities for a mean-
variance investor. Intuitively, for the covariance matrix to take this form
requires that the covariates in X capture not only the cross-sectional vari-
ation in expected returns, but also the assets’ loadings on factors that
generate systematic time-series variation in returns (as captured by the
first term in (3.27)) such that the assets’ loadings U on any remaining
systematic factors (as captured by the second term in (3.27)) are orthog-
onal to X. Any remaining risk not accounted for by these two types of
systematic factors must be purely idiosyncratic (the third term in (3.27)).
That the condition (3.27) approximately holds would not be unreason-
able in applications with large numbers of covariates in X. Suppose, for
example, that X has an L-factor structure £ = GRG' + o021y, where G is
an N x L factor loading matrix and € is nonsingular. For typical data sets
of stock returns, the vast share of stock return covariances are attributable
to a small number of factors, say L <20. If the X matrix contains many
characteristics that are informative about the stocks’ factor loadings, then
it may be the case that G is approximately spanned by X, i.e., G~ XB for
some matrix B. In this case, £ ~ XBR2B'X' + oIy, i.e., we have, approxi-
mately, a special case of (3.27). In other words, if there is a limited number
of major sources of covariances in individual asset returns and we use a
relatively large number of characteristics that tend to be related to the
assets’ loadings on the major sources of covariances, the deterioration in
investment opportunities due to portfolio aggregation may be small.
Moreover, these results above are stated in terms of the popula-
tion moments. They presume that an investor would know exactly the
expected returns and covariances of the asset returns. If we now also
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take into account the fact that these moments must be estimated in prac-
tice, aggregation to portfolios brings benefits by making estimation of the
covariance matrix feasible and less prone to estimation error—at least as
long as the number of covariates, and hence the number of portfolios, is
smaller than the number of individual assets.

In the next chapter, we proceed with this portfolio aggregation
approach. This allows us to implement Bayesian regression methods, tak-
ing into account the covariance matrix, and to make further progress in
tying prior beliefs to economic considerations.

3.6 NONLINEARITY

Nonlinearities play a big role in many ML applications. Neural networks
and tree-based methods are methods of choice in many settings because
of their ability to learn complex nonlinear patterns in the data. In con-
trast, in our simple past return-based return prediction example earlier
in this chapter, the inclusion of second- and third-order terms does not
contribute much to return predictability. Adjusting the covariate scal-
ing so that ridge regression downweights these nonlinear terms (when
going from the third to the fourth row in Table 3.2) actually improves
the predictive performance of the model. This simple empirical example
of course does not prove that nonlinearities are unimportant in return
prediction. But it is at least suggestive that nonlinearities do not jump out
from asset price data as obviously as they do in many ML applications in
other fields.

Interactions between covariates, rather than additive nonlinearity of
individual predictors, are perhaps a more plausible source of nonlinear-
ities in return prediction models. For example, it seems likely that some
return predictability patterns could be stronger among smaller, illiquid
stocks. This is an interaction effect that cannot be captured with a model
in which predictors enter only additively. Similarly, there could be vari-
ables that indicate whether a stock is particularly strongly exposed to
investor sentiment or to macroeconomic risks in ways that affect future
returns. These would again be interaction effects.

Empirical evidence is emerging that such interactions may be rele-
vant. Chen, Pelger, and Zhu (2019) estimate a deep neural network in
which a variety of firm characteristics serve as predictors of returns
and second moments. They find that to the extent nonlinearities are
present, they show up as interactions between covariates. Similarly, study-
ing neural networks and regression trees, Gu, Kelly, and Xiu (2020a)
find that nonlinearities predominantly appear in the form of interac-
tions, not as additive nonlinearities of individual predictors. Bryzgalova,
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Pelger, and Zhu (2019) investigate tree-based portfolios in which the
universe of stocks is split sequentially in several steps by firm character-
istics. This approach allows for higher-order interaction effects between
characteristics and they show that these interactions are important for
capturing differences in risk and return between stocks. Moritz and
Zimmermann (2016) find that interaction effects show up even with
the set of predictors restricted, as in the empirical example earlier in
this chapter, to functions of stocks’ own past returns. They present
evidence that interactions between different lags of past returns add
predictive power in return prediction. In line with the evidence from
these papers highlighting the role of interactions, the empirical analysis
presented in the next chapter will allow for interactions between firm
characteristics.

3.7 SPARSITY

Methods that induce sparsity have been successful in many ML applica-
tions. In these applications, a selection of a small number of covariates
tends to be sufficient to obtain good, robust predictive performance. It is
quite natural that asset pricing researchers have followed this lead. Many
efforts to bring ML methods into asset pricing have focused on lasso-
type methods that allow for sparsity, including Chinco, Clark-Joseph, and
Ye (2019), DeMiguel, Martin-Utrera, Nogales, and Uppal (2019), Feng,
Giglio, and Xiu (2020), and Freyberger, Neuhierl, and Weber (2020). But,
as we already discussed at the beginning of this chapter, it is not obvi-
ous that sparsity-inducing priors have much justification in asset pricing
applications.

The last row of Table 3.2 shows what we get when we apply a lasso
regression, as in (2.8), to our past returns-based prediction example.
Specifically, we apply it to the scaled version in which the magnitudes of
the second- and third-order covariates, after standardization, are scaled
down by a factor of 2 and 4, respectively. This is the same scaling that we
used in the ridge regressions in rows three and four of this table. The opti-
mal penalty takes a much lower value for lasso than for ridge regression
because the regression coefficient estimates are all much smaller than 1
in absolute magnitude and so the sum of absolute coefficients in the lasso
penalty is much bigger than the sum of squared coefficients in the ridge
penalty. Roughly speaking, the same degree of regularization then hap-
pens with a lower value of the penalty hyperparameter. In terms of fit,
the IS R? of 3.55% is higher than for the ridge regression in the third
row. In contrast, predictive performance according to the CV R? is quite
a bit worse for lasso (0.84% vs. 1.18%). Thus, in terms of the predictive
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Figure 3.2. Comparison of lasso and ridge regression coefficient estimates
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performance criterion that is maximized by the procedure, lasso does
worse than ridge regression.

Looking at the portfolio performance measures in Table 3.2, lasso does
somewhat worse than ridge in terms of the mean return, but the standard
deviation of the portfolio return is lower as well, and so the Sharpe ratio
ends up slightly higher. This illustrates again that conclusions based on
R? and portfolio performance measures can diverge substantially. While
lasso looks at least comparable to ridge in terms of Sharpe ratio, the spar-
sity induced by lasso does not yield an edge in performance. Overall, the
results add a small piece of evidence that sparsity is not as helpful for
predictive performance in asset pricing as it can be in many other ML
applications.

Figure 3.2 compares the individual regression coefficients estimated by
lasso (marked with a dot) with those from the ridge regression (marked
with a cross) with similarly scaled covariates in the third row of Table 3.2.
Overall, the estimates reveal the general tendency of lasso to shrink coef-
ficients less than ridge, unless they are shrunk all the way to zero. For the
first-order terms in panel (a), only very few of them are set to zero. This
again ties in well with our discussion that in return prediction exercises
like this one, we do not have strong a priori reasons to expect sparsity.

In contrast, from the estimates shown in panels (b) and (c) we can
see that most of the coefficients that have been set to zero are all coef-
ficients for second- and third-order terms. Ridge regression estimates of
these coefficients are close to zero, but lasso sets many of them to exactly
zero. Thus, lasso almost completely discards the nonlinear terms from
the model. This is another illustration of the fact that in settings like this
one, with low signal-to-noise ratio and essentially no a priori reason to
expect particular types of additive nonlinearities, the data do not strongly
call for specifications that allow individual covariates to enter nonlinearly.
For predictive performance it does not make much difference, however,
whether one sets the coefficients of the second- and third-order terms to
exactly zero or leaves them at a magnitude close to zero.

A preliminary conclusion from this analysis is that one should not take
it for granted that sparsity is helpful for predictive performance in asset
pricing. We take up this issue of sparsity again in the next chapter.

3.8 StruUCTURAL CHANGE

One of the perhaps biggest differences between asset pricing and many
common ML applications is that the data-generating process in finan-
cial markets is likely undergoing continuous structural change. There
are multiple reasons for these changes. First, the economy overall is
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undergoing structural change. Given that technology, regulation, and
the institutional environment have changed very much during the past
decades, it would be surprising if the relationship between firm character-
istics and future stock returns had stayed the same. Second, as we already
discussed at the beginning of this chapter, investors learn from data. Past
evidence of return predictability may have induced them to alter their
trading strategies in a way that destroyed earlier patterns of return pre-
dictability. Predictability that shows up historical data therefore might not
repeat in the same way in future data.

In the ML literature, the structural change problem is known as con-
cept drift. To address the problem, various methods have been developed
to allow parameters to adapt over time to the structural changes in the
data. For instance, this can be done with a weighting scheme that gives
more weight to recent data in the training of an algorithm. A particularly
simple example is a rolling window approach where data prior to a cer-
tain vintage is completely discarded. Exponential weighting of past data
is an alternative that gradually downweights old data. While such meth-
ods exist, there has been little work so far on bringing such methods into
asset pricing applications of ML and to figure out which ones work best.

Figure 3.3 applies the simple rolling window approach to the past-
returns based prediction example in Figure 3.1. Here the ridge regression
with first-, second-, and third-order terms of the predictors is estimated
within 20-year rolling windows. The penalty hyperparameter is tuned
using within-window leave-one-year-out CV. For this exercise, we use the
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entire CRSP data set starting in 1926, subject to the same NYSE size cutoff
and minimum lagged price requirement as in Figure 3.1. Based on the
coefficient estimates from each window, we then forecast returns in the
first month after the estimation window ends. Given the 20-year estima-
tion window and the up to 10-year lag of the predictors, the first month
in which we have a prediction is January 1956, 30 years after the start of
the CRSP database. We record the OOS R? in this month and then move
the 20-year window forward by one month to repeat the process.

Figure 3.3 plots the time series of these OOS R? in the form of a 12-
month moving average. For comparison, we also show, for each month
t, the IS R? from the estimation window ending in month ¢. Several facts
in this figure are noteworthy. First, the OOS R? is almost everywhere
smaller than the IS R2. Thus, even though regularization in ridge regres-
sion should help prevent overfitting, the cross-validated IS R? still seems to
be an upward biased estimate of the OOS RZ. Part of the reason could be
that CV is used to tune the penalty hyperparameter. In this sense, the CV
R? may still be prone to overfitting because we picked the penalty to min-
imize it. But very likely, structural change also accounts for a substantial
part of the R?2-decay from IS to OOS. Some of the predictive relationships
between covariates and future returns that exist in past data simply do
not carry over into future data. Consistent with such a structural change,
both the IS and OOS R? have a tendency to decline toward zero over
time. In the last 10-15 years of the sample, the average OOS R? is close
to zero.

Rather than simple rolling-window estimation, an approach that grad-
ually downweights observations in the more distant past may perform
better in tracking changing parameters. For example, exponential weight-
ing is implied by the steady-state Kalman filter in the case where regression
coefficients follow random walks (see, e.g., Hamilton 1994). Exponential
weighting is also computationally convenient because it allows recursive
updating of regression coefficient estimates every period. Moreover, recur-
sive updating also works for ridge regression. To see this, let’s modify
the ridge regression from (3.11) by replacing 7, with an exponentially
weighted average,

t
g =XX+yIk)'X (er(l —¢)H¢), (3.28)
s=1

where 0 < ¢ < 1. We assume that the sample is sufficiently long so that

! (1—¢)S¢p~1. The estimator g, now has a time subscript because
we will consider how the estimates change when return data from addi-
tional time periods is observed. A computationally convenient property of
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exponential weighting is that we can express g, as a recursively updated
estimator:

g=01-¢)8, 1 +¢ (XX +yIx) " Xr. (3.29)

This means that to compute the estimate for a new period, we do not
need to reestimate over the whole sample. Instead, we can just use the
most recent period’s return data to compute the second term in (3.29)
and use it to update the previous period’s estimate.

Rolling windows and exponential weighting, and related techniques,
are not new to asset pricing. But there are additional complications with
ML techniques on high-dimensional data sets where regularization is
required. In regularized methods like ridge regression and lasso, the issue
is not only how to track structural change in the parameters of the pre-
diction model, but also whether and how to adapt the values of the
penalty hyperparameters over time. In the ridge regression example in
(3.29) we kept the penalty parameter y fixed, but there is not neces-
sarily a good reason to keep it fixed over time. And if it can vary over
time, we need a data-driven method to estimate how it changes over time.
However, simply reestimating the penalty hyperparameters every period
in overlapping rolling or expanding windows may be computationally too
expensive. With big data sets, the computational burden can be substan-
tial. To circumvent this computational burden, Monti, Anagnostopoulos,
and Montana (2018) propose a recursive updating scheme for penalty
hyperparameters. This is potentially a promising avenue for asset pricing
applications, too.

Structural change considerations also raise questions about the suit-
ability of CV methods for model validation and hyperparameter tuning.
Typical implementations of k-fold CV presume that the temporal position
of a validation fold relative to the training folds is irrelevant. Validation
folds can be drawn from data that is older than some of the training data.
In a stationary setting, this is fine. But when structural change is present,
it is not clear that drawing validation data from time periods that precede
all or part of the training data is appropriate. The direction of time can
matter. A model that performs well in predicting data in backward vali-
dation folds may not necessarily perform well in predicting forward. This
is an important issue for asset pricing applications of ML and there is so
far little research tackling it. In Chapter 5 we will return to this question.

3.9 CONCLUDING REMARKS
In this chapter, we have explored fundamental issues that arise in the

application of supervised ML techniques in asset pricing. In many ways,
ML methods are well suited for prediction problems in academic research
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in asset pricing and in quantitative investment management. I have
focused the discussion on cross-sectional asset return prediction prob-
lems, but there are other types of problems in asset pricing where
supervised ML techniques could be useful. This includes, for exam-
ple, applications that involve prediction of asset cash flows rather than
returns, credit risk prediction, and the search for approximate hedging
strategies.

The discussion in this chapter highlighted that while ML techniques
can be useful, off-the-shelf application of ML methods without careful
adaptation to the specific conditions of an asset pricing application is
unlikely to produce good results. Prediction problems in asset pricing
are in many ways substantially different from the prediction problems
that most ML methods were developed for. Seemingly mundane questions
such as how to scale predictor variables in data preprocessing can actually
matter a lot for the performance of supervised learning algorithms. The
choice between different ML methods implicitly pins down the patterns
in the data—such as sparsity or the degree and type of nonlinearity—that
the estimation can detect. Given the low signal-to-noise ratio in typical
asset pricing settings, the idea that one could simply let the data speak
and resolve these issues in a completely automatic and data-driven way
without imposing substantial structure on the problem seems far-fetched.

The conclusion, therefore, is that we need an analytical framework that
allows us to inject a limited amount of economic reasoning when we set
up ML tools to tackle asset pricing problems. The next chapter presents
an approach that makes some progress in this direction. Going beyond the
simplistic example with just past returns as predictors that we examined
in this chapter, we look at an application with a broader set of firm char-
acteristics as candidate predictors. In line with the takeaways from the
discussion in this chapter, the approach will take into account the impor-
tant role of the covariance matrix in portfolio performance and it will
allow for nonlinearities in the form of interactions between firm charac-
teristics. Most importantly, the approach is built on a Bayesian foundation
that provides a conduit to inject economic reasoning when we set up the
estimation and regularization approach.



Chapter 4

ML IN CROSS-SECTIONAL ASSET PRICING

IN THE PREVIOUS CHAPTER, we outlined key issues that arise in the appli-
cation of supervised learning techniques in return prediction and optimal
portfolio formation. We now look at an approach that addresses many,
although not all, of these issues. As in the previous chapter, the underlying
analytical framework is based on Bayesian regression.

First, we look at a much broader set of covariates. In the previous chap-
ter, the set of return predictors was limited to functions of a stock’s own
past returns. In this chapter, we look at an application that uses a large set
of stock characteristics that have appeared as return predictors in empir-
ical asset pricing studies. Stock return prediction analyses in this earlier
pre-ML literature have looked at each of these stock characteristics in iso-
lation, or only at small subsets of these characteristics at a time. Here we
use a supervised learning approach to look at all of them jointly.

Second, building on the motivation from Section 3.5, we aggregate
stock returns into portfolios weighted by these (rank-transformed and
normalized) stock characteristics. These characteristics portfolios form
the basis assets that span the investable universe in our analysis.

Third, facilitated by this portfolio aggregation, we incorporate the
covariance matrix of these characteristics portfolio returns into the prior
beliefs and the estimation approach. We leave the covariance matrix
unrestricted, without imposing any special structure on it. However, we
do impose structure on the relation between covariances and expected
returns.

Fourth, to impose economic restrictions on the relation between covari-
ance and expected returns, the approach in this chapter is framed in
terms of a stochastic discount factor (SDF) model. Each of the charac-
teristics portfolios is a candidate risk factor in this SDE The parameters
to be estimated are the price of risk coefficients corresponding to each
of these candidate factors. These SDF weights are equivalent to portfolio
weights in a mean-variance efficient portfolio. A conventional approach
would be to estimate SDF coefficients with a cross-sectional regression of
average returns on covariances of returns and candidate factors. Due to
the large number of candidate factors, this conventional approach would
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lead to spurious overfitting. Informative prior beliefs in our Bayesian set-
ting prevent this overfitting, which helps ensure good OOS predictive
performance.

Fifth, the prior beliefs are motivated by basic asset pricing theory. Asset
pricing models of various kinds generally imply that much of the variance
of the SDF should be attributable to high-eigenvalue (i.e., high-variance)
principal components (PCs) of the candidate factor returns. Therefore,
if a factor earns high expected returns, it also should have high vari-
ance. As Kozak, Nagel, and Santosh (2018) argue, this is true not only
in rational expectations models in which pervasive macroeconomic risks
are priced, but also, under plausible restrictions, in models in which cross-
sectional variation in expected returns arises from biased investor beliefs.
The prior distribution in our approach reflects these economic consid-
erations. Compared to the naive ordinary least squares (OLS) estimator,
the Bayesian posterior shrinks the SDF coefficients toward zero, but the
degree of shrinkage in our case is not equal for all assets. Instead, the pos-
terior applies significantly more shrinkage to SDF coefficients associated
with low-eigenvalue PCs.

Sixth, we also investigate whether a sparse representation of the SDF in
which only few characteristics-based factors enter the SDF is sufficient to
empirically capture the investment opportunity set. Such characteristics-
sparse SDFs are popular in the empirical asset pricing literature (see, e.g.,
Fama and French (1993) for a three factor model; Hou, Xue, and Zhang
(2015) use four factors, Fama and French (2015) use five factors, and
Barillas and Shanken (2018) suggest a six-factor model). Our baseline
Bayesian approach implies regularization with a squared L?-norm penalty
that shrinks many SDF coefficients to nearly, but not exactly, zero. To
allow for sparsity, we augment the estimation criterion with an L'-norm
penalty, similar to an elastic net.

Finally, we use a simple approach to allow characteristics to have
nonlinear effects. For this purpose, we augment the set of stock char-
acteristics with second and third powers and linear first-order inter-
actions of characteristics. The first-order interactions allow us to cap-
ture nonlinearities that empirical asset pricing studies focused on small
sets of characteristics often allow for through double-sorted portfolios.
For example, by sorting stocks into portfolios independently on two
dimensions—say, firm size and the past year’s return (momentum)—
one can allow the relation between these characteristics and expected
returns and covariances to be nonlinear. The pairwise first-order inter-
actions work in a similar way, but we form them for large numbers
of characteristics. Overall, augmenting the characteristics set with these
nonlinear transformations results in a total number of thousands of
characteristics.
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The material in this chapter is an abbreviated and adapted version of
Kozak, Nagel, and Santosh (2020).

4.1 AsSET PRICING WITH CHARACTERISTICS-BASED FACTORS

We start by laying out the basic asset pricing framework that under-
lies characteristics-based factor models. We first describe this framework
in terms of population moments, leaving aside estimation issues for
now. Building on this, we can then proceed to describe the estimation
problem and a supervised learning approach for dealing with the high
dimensionality of this problem.

For any point in time ¢, let 7; denote an N x 1 vector of excess returns
for N stocks. Each stock has K characteristics that we collect in the N x K
matrix X;. In line with the portfolio aggregation approach outlined in the
previous chapter, we use K factor portfolios formed by weighting stocks’
returns with their characteristics. The factor returns are f, =X, _;7;. Then
one can always find a price-of-risk vector b such that an SDF

Mtzl—b/(ft—Eft) (4.1)
satisfies the unconditional pricing equation
E [M.f,]=0, (4.2)

where the factors f, serve simultaneously as the assets whose returns we
are trying to explain as well as the candidate factors that can potentially
enter as priced factors into the SDE The price-of-risk vector b in the SDF
is at the same time also the vector of weights in the mean-variance efficient
(MVE) portfolio.

In our empirical work, we cross-sectionally demean each column of
X1 so that the factors in f, are returns on zero-investment long-short
portfolios. Typical characteristics-based factor models in the literature
add a market factor to capture the level of the equity risk premia,
while the long-short characteristics factors explain cross-sectional vari-
ation. In our specification, we focus on these cross-sectional differences.
We do not explicitly include a market factor, but we orthogonalize the
characteristics-based factors with respect to the market factor. This is
equivalent, in terms of the effect on pricing errors, to including a mar-
ket factor in the SDFE. It is therefore useful here to think of the elements of
f as factors that have been orthogonalized. In our empirical analysis, we
also work with factors that are orthogonalized with respect to the market
return.
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With knowledge of population moments, we could now solve (4.1) and
(4.2) for the SDF coefficients

b=3"'E(f,), (4.3)
where T=E [(ft -Ef,)(f,—E ft)/]. Rewriting this expression as

b=(22) 'ZE(f) (4.4)

shows that the SDF coefficients can be interpreted as the coefficients in
a cross-sectional regression of the expected asset returns to be explained
by the SDF—which, in this case, are the K elements of E[f,]—on the K
columns of covariances of each factor with the other factors and with
itself.

In practice, without knowledge of population moments, estimating the
SDF coefficients by running such a cross-sectional regression in sample
would result in overfitting of noise, with the consequence of poor out-
of-sample performance, unless K is small. Since SDF coefficients are also
weights of the MVE portfolio, the difficulty of estimating SDF coefficients
with big K is closely related to the well-known problem of estimating the
weights of the MVE portfolio when the number of assets is large. The
supervised learning approach we use is designed to address this problem.

Much of the existing characteristics-based factor model literature has
sidestepped this high-dimensionality problem by focusing on models that
include only a small number of factors. We will refer to such models
as characteristics-sparse models. Whether such a characteristics-sparse
model can adequately describe the SDF in a cross-section with a large
number of stock characteristics is a key empirical question that the
empirical results reported in this chapter shed light on.

Kozak, Nagel, and Santosh (2020) point out that there are no strong
economic reasons to expect characteristics-sparsity of the SDF. However,
one may be able to find rotations of the characteristics factor data that
admit, at least approximately, a sparse SDF representation. Kozak, Nagel,
and Santosh (2018) argue that absence of near-arbitrage (extremely high
Sharpe ratios) implies that factors earning substantial risk premia must be
major sources of co-movement. This conclusion obtains under very mild
assumptions and applies equally to “rational” and “behavioral” models.
Furthermore, for typical sets of test assets, returns have a strong factor
structure dominated by a small number of PCs with the highest vari-
ance. Under these two conditions, an SDF with a small number of these
high-variance PCs as factors should explain most of the cross-sectional
variation in expected returns. Motivated by this theoretical result, we
explore empirically whether an SDF sparse in PCs can be sufficient to
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describe the cross-section of expected returns, and we compare it, in terms
of pricing performance, with SDFs that are sparse in characteristics.

To construct the PC factors, we use the eigendecomposition of the
factor covariance matrix,

T =0AQ with A =diag(A1,A2,...,AH), (4.5)

where Q is the matrix of eigenvectors of ¥, and A is the diagonal matrix
of eigenvalues ordered in decreasing magnitude. Using the eigenvectors as
portfolio weights, we obtain the PC factors

p,=0Qf, (4.6)

Using all PCs, and with knowledge of population moments, we could
express the SDF as

M;=1-by(p,—Ep,),  with bp=A""E[p,. (4.7)

4.2 SUPERVISED LEARNING APPROACH

We now describe the supervised learning approach to estimate the SDF
parameter vector b (or bp in the case where we use the PC factors).
The method is a variant of the Bayesian regression that we discussed in
Chapters 2 and 3.

Consider a sample with size T. We denote

i==>f, (4.8)
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A natural, but naive, estimator of the coefficients b of the SDF in (4.1)
could be constructed based on the sample moment conditions

1 T
=) fi=0, (4.10)
t=1
1«
7 2 Milb, )f, =0. (4.11)
t=1

Solving for b, the resulting estimator is the sample version of (4.3):

bh=% '@ (4.12)
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However, unless K is very small relative to T, this naive estimator yields
very imprecise estimates of b. The main source of imprecision is the uncer-
tainty about u. Note that one can rewrite the naive estimator as an OLS

regression estimator b= (ff)_l X ji, i.e., a cross-sectional regression of
factor means on the covariances of these factors with each other. As is gen-
erally the case in expected return estimation, the factor mean estimates are
imprecise even with fairly long samples of returns. In a high-dimensional
setting with large K, the cross-sectional regression effectively has a large
number of explanatory variables. As a consequence, the regression will
end up spuriously overfitting the huge noise component in the factor
means, resulting in a very imprecise b estimate and bad out-of-sample
performance. Estimation uncertainty in the covariance matrix can fur-
ther exacerbate the problem, but as discussed in more detail in Kozak,
Nagel, and Santosh (2020), the main source of fragility in this setting are
the factor means, not the covariances.

To avoid spurious overfitting, we bring in economically motivated prior
beliefs about the factors’ expected returns. If the prior beliefs are well
motivated and truly informative, this will help reduce the (posterior)
uncertainty about the SDF coefficients. In other words, bringing in prior
information regularizes the estimation problem sufficiently to produce
robust estimates that perform well in out-of-sample prediction. We first
start with prior beliefs that shrink the SDF coefficients away from the
naive estimator in (4.12) but without imposing sparsity. We then expand
the framework to allow for some degree of sparsity as well.

4.2.1 Shrinkage Estimator

To focus on uncertainty about factor means, the most important source
of fragility in the estimation, we proceed under the assumption that X is
known. We impose the following prior beliefs about expected returns of
the K factor portfolios

2
w~N{0, x2], (4.13)
T

where t =tr [X], and « is a constant controlling the “scale” of u that may
depend on 7 and K.

To understand the economic implications of these prior beliefs, it is
useful to consider the PC portfolios p, = Q'f, with ¥ =0QAQ' that we
introduced in Section 4.1. Expressing the prior (4.13) in terms of PC
portfolios, we get
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2
wp~N (0, K?AZ . (4.14)

For the prior distribution of Sharpe ratios of the PCs, we obtain

2
A zpp~N (0, 7). (4.15)
T

Hence, this prior belief specification implies that big magnitudes of Sharpe
ratios are more likely to arise for PCs with high eigenvalues, i.e., for
portfolios that load on major sources of return covariances. In contrast,
for PCs with low eigenvalues, i.e., portfolios that load mostly on more
idiosyncratic types of risk, Sharpe ratios are likely to be close to zero.

These prior beliefs are broadly in line with a wide variety of asset
pricing models. For instance, in rational expectations models in which
cross-sectional differences in expected returns arise from exposure to
macroeconomic risk factors, risk premia are typically concentrated in one
or a few common factors. This means that Sharpe ratios of low-eigenvalue
PCs should be smaller than those of the high-eigenvalue PCs that are the
major source of risk premia. Kozak, Nagel, and Santosh (2018) show that
a similar prediction also arises in plausible behavioral models in which
investors have biased beliefs. They argue that to be economically plausi-
ble, such a model should include arbitrageurs in the investor population,
and it should have realistic position size limits (e.g., leverage constraints
or limits on short selling) for the biased-belief investors (who are likely
to be less sophisticated). As a consequence, biased beliefs can only have
substantial pricing effects in the cross-section if the variation in these
biased beliefs across stocks aligns with high-eigenvalue PCs; otherwise,
arbitrageurs would find it too attractive to aggressively lean against the
demand from biased investors, leaving very little price impact. To the
extent it exists, mispricing then appears in the SDF mainly through the
risk prices of high-eigenvalue PCs. Thus, within both classes of asset pric-
ing models, we would expect high magnitudes of Sharpe ratios to be more
likely for high-eigenvalue PCs, which is consistent with the prior beliefs
we specified here.

Another way to think about these priors is to imagine an investor who
is analyzing the historical data with the goal of forming a mean-variance
optimized portfolio. In a market that has at least some active arbitrageurs
preventing extreme forms of mispricing, the investor should expect, a pri-
ori, that the optimal portfolio does not involve extremely large positive
or negative portfolio weights. Since the optimal portfolio weights of a
rational investor and SDF coefficients are equivalent, this means that the
sum of squared SDF coefficients, b'b, should remain bounded below some
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value that is not extremely high. A minimal requirement for this to be true
is that E[b'b] remains bounded (for a given K). Under the prior (4.13) we

have
2

E[b'b] = ’%K (4.16)

which does not depend on A and can be kept at moderate levels with
an appropriate choice of k. As Kozak, Nagel, and Santosh (2020) dis-
cuss, if the exponent of X in (4.13) was some n <2 instead of n=2,
then the SDF coefficients associated with some low-eigenvalue PCs could
take extremely high values, leading to very high E[b'b] and implying the
optimal portfolio of a rational investor would place huge bets on the
lowest-eigenvalue PCs—which seems implausible.

Based on the assumption (4.13), we get an independent and identically

distributed (i.i.d.) prior on SDF coefficients, b ~ N/ (O, "T—ZIK). Combining
these prior beliefs with information about sample means jt from a sample

with size T, assuming a multivariate-normal likelihood, we obtain the
posterior mean of b

b= +yIv) " i, (4.17)

where y = —=. To map this estimator back to the Bayesian regression
(2.22) that we discussed in Section 2.4, note that one can rewrite the
naive estimator in (4.12), now with known X, as a GLS regression estima-
-1 _ . . . . . .
tor: (22_12) 2y . Imposing an informative prior with covariance
. 2 . . .
matrix Xg=“-Ig, the estimator then maps exactly into the Bayesian
regression posterior mean in (2.22) and (4.17).

Setting this up as a Bayesian estimation problem avoids the rescaling
problem we discussed in the previous chapter. For example, if we trans-
formed the factors f, with a nonsingular matrix Hf,, one can show that
the posterior mean that corresponds to (4.17) for the SDF coefficients for
these transformed factors is by = (H')"1b. Asa consequence, the resulting

. ~ —
estimated SDF M,=1—-bH '(Hf, —-EHf,)=1— b (f,—Ef,) remains
invariant to this transformation of the factors.

ECONOMIC INTERPRETATION

To provide an economic interpretation of what this estimator does, it is
convenient to consider a rotation of the original space of returns into the
space of principal components. Expressing the SDF based on the estimator

(4.17) in terms of PC portfolio returns, p, = Q'f,, with coefficients bp =
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Q'b, we obtain a price-of-risk vector with elements

N A i
bpy=( 21— ) EE (4.18)
’ Aty ) A

Compared with the naive exactly identified GMM estimator from (4.12),
which would yield SDF coefficients for the PCs of

~ols  HP
b?)’?:)‘_i/’ (4.19)

our Bayesian estimator (with y > 0) shrinks the SDF coefficients toward
zero with the shrinkage factor A;/(%;+y) <1. Most importantly, the
shrinkage is stronger the smaller the eigenvalue A; associated with the PC.
The economic interpretation is that under the prior beliefs we specified,
we judge as implausible that a PC with low eigenvalue could contribute
substantially to the volatility of the SDF and hence to the overall maxi-
mum squared Sharpe ratio. For this reason, the estimator shrinks the SDF
coefficients of these low-eigenvalue PCs particularly strongly.

REPRESENTATION AS A PENALIZED ESTIMATOR

As we discussed in Section 2.4, the Bayesian estimator maps into a penal-
ized regression estimator. If we maximize the model cross-sectional R?
for explaining mean returns subject to a penalty on the model-implied
maximum squared Sharpe ratio yb'Xb,

13=argmbin{ (i —2b) (i — b) + yb'Tb), (4.20)

the problem leads to exactly the same solution as in (4.17). The objective
in (4.20) resembles a ridge regression objective, but with some important
differences. A standard ridge regression objective function would impose
a penalty on the squared L%-norm of coefficients, b'b, while the objective
in (4.20) penalizes yb'Xb.

We can also rewrite the criterion in (4.20) equivalently as

i)zargmbin{ (R —2b) =7 ( — =b) + yb'b). (4.21)

In this formulation, the estimator penalizes b'b as in a standard ridge
regression, but the loss function is different because errors are weighted
by £~1, akin to a GLS regression. This way of writing the estimation
criterion is useful for introducing a sparsity-inducing penalty.
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4.2.2  Sparsity

The method that we have presented so far deals with the high-
dimensionality challenge by shrinking SDF coefficients toward zero, but
none of the coefficients are set to exactly zero. In other words, the solution
we obtain is not sparse. As we have argued in Section 4.1, the economic
case for extreme sparsity with characteristics-based factors is weak. How-
ever, it may be useful to allow for the possibility that some factors are
truly redundant in terms of their contribution to the SDE. Moreover, as
we have discussed, there are economic reasons to expect that a represen-
tation of the SDF that is sparse in terms of PCs could provide a good
approximation. Sparsity could therefore be useful when we consider PCs
as factors.

For these reasons, we now introduce an additional L' penalty
7 Zf; |bj| in the penalized regression problem given by (4.21). The
approach is motivated by lasso regression and elastic net and it leads to
some elements of b being set to zero. Combining both L' and L? penalties,
our estimator solves the problem:!

H
b= arg mbin ([1 — Zb)/ > ! ([L - Eb) +mb'b+y Z |b,‘| . (4.22)
=1

This dual-penalty method enjoys much of the economic motivation
behind the L2-penalty-only method with an added benefit of potentially
delivering sparse SDF representations. We can control the degree of spar-
sity by varying the strength of the L! penalty and the degree of economic
shrinkage by varying the L? penalty.

While we will ultimately let the data speak about the optimal values of
the penalties y; and y,, there is reason to believe that completely switch-
ing off the L% penalty and focusing purely on lasso-style estimation would
not work well in this asset pricing setting. Lasso is known to suffer from
relatively poor performance compared with ridge and elastic net when
regressors are correlated (Tibshirani 1996, Zou and Hastie 2005). As we
discussed in Section 2.2.1, the tendency of L'-penalized estimation to
pick one of two correlated variables, rather than averaging them, hurts
predictive performance if correlated covariates each contain a common
signal and uncorrelated noise. For instance, rather than picking book-to-
market as the only characteristic to represent the value effect in an SDF, it
may be advantageous to consider a weighted average of multiple measures
of value, such as book-to-market, price-dividend, and cash flow-to-price

ITo solve the optimization problem in (4.22), we use the LARS-EN algorithm in Zou
and Hastie (2005).
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ratios. This reasoning also suggests that an L!-only penalty may work bet-
ter when we first transform the characteristics-based factors into their PCs
before estimation. We examine this question in our empirical work below.

4.2.3 Data-Driven Penalty Choice

To implement the estimators (4.17) and (4.22), we need to set the values of
the penalty parameters y, y1, and y,. In the L?-only penalty specification,
the penalty parameter y = =7 following from the prior (4.13) has an
economic interpretation. The root expected maximum squared Sharpe
ratio under the prior is

E[p/ = ' u)V? =«. (4.23)

This means that y = = implicitly represents views about the maximum

squared Sharpe ratio. For example, an expectation that the maximum
Sharpe ratio cannot be very high, i.e., low «, would imply high y and
hence a high degree of shrinkage imposed on the estimation. Some
researchers pick a prior belief based on intuitive reasoning about the
likely relationship between the maximum squared Sharpe ratio and the
historical squared Sharpe ratio of a market index.2 However, these are
intuitive guesses. It would be difficult to go further and ground beliefs
about « in deeper economic analyses of plausible degrees of risk aversion,
risk-bearing capacity of arbitrageurs, and degree of mispricing. For this
reason, we prefer a data-driven approach. But we will make use of (4.23)
to express the magnitude of the L2-penalty that we apply in estimation in
terms of an economically interpretable root expected maximum squared
Sharpe ratio.

We use a data-driven approach that involves estimation of y via k-fold
cross-validation (CV). We divide the historic data into k equal subsam-
ples. Then, for each possible y (or each possible pair of y1, y, in the
dual-penalty specification), we compute b by applying (4.17) to k—1
of these subsamples. We evaluate the OOS fit of the resulting model on
the single withheld subsample. Consistent with the penalized objective,
(4.20), we compute the OOS R-squared as

(ﬁz - fzi’)/ (17«2 - le;)

RZ =1-— -
1)

008

, (4.24)

2Barillas and Shanken (2018) is a recent example. See also MacKinlay (1995) and Ross
(1976) for similar arguments.
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where the subscript 2 indicates an OOS sample moment from the with-
held sample. We repeat this procedure k times, each time treating a
different subsample as the OOS data. We then average the R? across these
k estimates, yielding the cross-validated RZ . Finally, we choose y (or y1,
¥») that generates the highest R2

00s*

We chose k=3 as a compromise between estimation uncertainty in b
and estimation uncertainty in the OOS covariance matrix X,. The latter
type of uncertainty increases with k. With high k, the withheld sample
becomes too short for X, to be well behaved, which distorts the fit-
ted factor mean returns X,b. However, our results are robust to using
moderately higher k.

This penalty choice procedure uses information from the whole sample
to find the penalty parameters that minimize the R? based on Eq. (30).
The cross-validated OOS R? at the optimal values of the penalty param-
eters is therefore typically an upward-biased estimate of the true OOS R?
that one would obtain in a new data set that has not been used for penalty
parameter estimation (Varma and Simon (2006), Tibshirani and Tibshi-
rani (2009)). Our interest centers on the optimal strength of regularization
and we therefore are only concerned about the relative performance of
models at various degrees of regularization, not the level of the OOS R2.
In a subsequent step, in Section 4.4, we also evaluate the penalty param-
eter choice OOS by applying the estimated SDF on a part of the sample
that has not been used to estimate the penalty parameters.

4.3 EMPIRICAL ANALYSIS

We start with the universe of US firms in the CRSP database. We construct
two independent sets of characteristics. The first set relies on characteris-
tics underlying common “anomalies” in the literature. We follow standard
anomaly definitions in Novy-Marx and Velikov (2016), McLean and Pon-
tiff (2016), Kogan and Tian (2015), and Hou, Xue, and Zhang (2015)
and compile our own set of 50 such characteristics. The second set of
characteristics is based on 70 financial ratios as defined by Wharton
Research Data Services (WRDS): the WRDS Industry Financial Ratios
(WFR), a collection of over 70 financial ratios grouped into the following
seven categories: capitalization, efficiency, financial soundness/solvency,
liquidity, profitability, valuation, and others. We supplement this data
set with 12 portfolios sorted on past monthly returns in months 7 — 1
through ¢ — 12. The combined data set contains 80 managed portfolios
(we drop two variables due to their short time series and end up with
68 WRDS ratios in the final data set). The Internet Appendix of Kozak,
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Nagel, and Santosh (2020) provides definitions of all variables in both
data sets.

To focus exclusively on the cross-sectional aspect of return predictabil-
ity, remove the influence of outliers, and keep constant leverage across
all portfolios, we perform certain normalizations of characteristics that
define our characteristics-based factors. First, we perform a simple rank
transformation for each characteristic. For each characteristic i of a stock
s ata given time ¢, denoted as cé,t, we sort all stocks based on the values of

their respective characteristics cé,t and rank them cross-sectionally (across
all s) from 1 to 7;, where #; is the number of stocks at ¢ for which this
characteristic is available.> We then normalize all ranks by dividing by
n; + 1 to obtain the value of the rank transform

. rank (c!
e JS ;’t)- (4.25)

Next, we normalize each rank-transformed characteristic rcé,t by first cen-
tering it cross-sectionally and then dividing by sum of absolute deviations
from the mean of all stocks
i 0
. ek, — e
i ( S,k t)
Xt =S Tl (4.26)
2521 |"Cs,t - "Ct|

where r"ci:nltZ:":l rcéit. The resulting zero-investment long-short

portfolios of transformed characteristics xé,t are insensitive to outliers and
allow us to keep the absolute amount of long and short positions invested
in the characteristic-based strategy (i.e., leverage) fixed. For instance, dou-
bling the number of stocks at any time ¢ has no effect on the strategy s
gross exposure.* Finally, we combine all transformed characteristics Xe;
for all stocks into a matrix of instruments X;.> Interaction with returns,
f=X,_,r, then yields one factor for each characteristic.

To ensure that the results are not driven by very small illiquid stocks,
we exclude small-cap stocks with market caps below 0.01% of aggregate
stock market capitalization at the time of portfolio formation.® In all of
our analysis, we use daily returns from CRSP for each individual stock.

31f two stocks are “tied,” we assign the average rank to both. For example, if two firms
have the lowest value of ¢, they are both assigned a rank of 1.5 (the average of 1 and 2).
This preserves any symmetry in the underlying characteristic.

“4Since the portfolio is long-short, the net exposure is always zero.

3 xé’t is missing we replace it with the mean value, zero.

For example, for an aggregate stock market capitalization of $20 trillion, we keep only
stocks with market caps above $2 billion.
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Figure 4.1. OOS R? from dual-penalty specification (50 anomaly portfolios).
0OS cross-sectional R% for families of models that employ both L! and L% pen-
alties simultaneously using 50 anomaly portfolios (Panel a) and 50 PCs based
on anomaly portfolios (Panel b). We quantify the strength of the L2 penalty by
prior root expected squared Sharpe ratio on the x-axis. We show the number of
retained variables in the SDFE, which quantifies the strength of the L! penalty, on
the y-axis. Both axes are plotted on logarithmic scale.

Using daily data allows us to estimate second moments much more pre-
cisely than with monthly data and focus on uncertainty in means while
largely ignoring uncertainty in covariance estimates (with exceptions as
noted below). We adjust daily portfolio weights on individual stocks
within each month to correspond to a monthly rebalanced buy-and-hold
strategy during that month. Finally, we orthogonalize all portfolio returns
with respect to the CRSP value-weighted index return using market factor
loadings estimated in the full sample.

4.3.1 Fifty Anomaly Characteristics

We start with the data set of 50 portfolios based on anomaly charac-
teristics. The sample is daily from November 1973 to December 2017.
Figure 4.1 presents the OOS R? from our dual-penalty specification as a
function of « (on the x-axis) and the number of nonzero SDF coefficients
(on the y-axis). Focusing on the left-hand part of Figure 4.1 based on
raw returns of the 50 anomaly portfolios, unregularized models (top-right
corner) demonstrate extremely poor performance with OOS R? substan-
tially below zero. Hence, substantial regularization is needed to get good
OOS performance. Moreover, there is not much substitutability between
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Figure 4.2. L2 model selection and sparsity (50 anomaly portfolios). Panel (a)
plots the in-sample cross-sectional R% (dashed), OOS cross-sectional R* based
on cross-validation (solid), and OOS cross-sectional R2 based on the propor-
tional shrinkage (dash-dot) from Pdstor and Stambaugh (2000). In Panel (b), we
show the maximum OOS cross-sectional R% attained by a model with 7 factors
(on the x-axis) across all possible values of L2 shrinkage, for models based on
original characteristics portfolios (solid) and PCs (dashed). Dotted lines in Panel
(b) depict —1 s.e. bounds of the CV estimator.

L'- and L?-regularization. To attain the maximum OOS RZ, the data calls
for substantial L2-shrinkage but essentially no sparsity. Imposing sparsity
(i.e., moving down in the plot) leads to a major deterioration in OOS R2.
This indicates that there is almost no redundancy among the 50 anoma-
lies. To adequately capture the pricing information in the 50 anomalies,
one needs to include basically all of these 50 factors in the SDE. Shrink-
ing their SDF coefficients is important for obtaining good performance,
but forcing any of them to zero to get a sparse solution hurts the OOS
R2. In other words, a characteristics-sparse SDF with good pricing per-
formance does not exist. Hence, many anomaly portfolio factors make
substantial marginal contributions to the OOS explanatory power of
the SDE.

If we take the PCs of the anomaly portfolio returns as basis assets, as
shown in right-hand part of Figure 4.1, the situation is quite different. A
relatively sparse SDF with only four PCs, for example, does quite well in
terms of OOS R?, and with ten PCs we get close to the maximum OOS
R2. Thus, a PC-sparse SDF prices the anomaly portfolios quite well.

Figure 4.2 provides a more precise picture of the key properties of OOS
R? by taking cuts of the contour plots. The solid line in the left-hand

Number of variables in the SDF
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side plot represents a cut along the top edge of Figure 4.1 with varying
degrees of L2-shrinkage but no sparsity. As the figure shows, the OOS R?
is maximized for x ~ 0.30. The standard error bounds indicate that OOS
R? around this value of « is not only economically but also statistically
quite far above zero.

In Section 4.2.1, we argued on economic grounds that our prior (4.13)
with variance proportional to ¥? is reasonable. However, it would be
useful to check whether this economic motivation is also accompanied
by better performance in the data. To do this, the dash-dot line in the left-
hand side figure plots the OOS R? we would get with the more commonly
used prior of Pastor and Stambaugh (2000), where the prior variance is
proportional to ¥ rather than 2. Recall that our method performs both
level shrinkage of all coefficients, as well as relative shrinkage (twist) that
downweights the influence of low-eigenvalue PCs. The method in Pés-
tor and Stambaugh (2000) employs only level shrinkage. We can see that
optimally chosen level shrinkage alone achieves OOS R? lower than 5%
(an improvement over the OLS solution) but falls substantially short of
the 30% R? delivered by our method.” Relative shrinkage, which is the
key element of our method, therefore contributes a major fraction of the
total out-of-sample performance.

The right-hand side graph in Figure 4.2 takes a cut in the contour plots
along the ridge of maximal OOS R? from bottom to top, where we vary
sparsity and choose the optimal L2-shrinkage for each level of sparsity.
The solid line shows very clearly how characteristics-sparse SDFs perform
poorly. The OOS R? only starts rising substantially at the lowest sparsity
levels toward the very right of the plot. In PC space, on the contrary, very
sparse models perform exceedingly well: a model with only two PC-based
factors captures roughly two-thirds of the total OOS cross-sectional RZ.
A model with ten PC factors achieves nearly maximal R?, while a model
with ten factors in the space of characteristics-based factors achieves less
than a third of the maximum.

To summarize, there is little redundancy among the 50 anomalies. As
a consequence, it is not possible to find a sparse SDF with just a few
characteristics-based factors that delivers good OOS performance. For
this reason, it is also important to deal with the high-dimensional nature
of the estimation problem through an L?-shrinkage rather than just an
L'-penalty and sparsity. L2-shrinkage delivers much higher OOS R2 than
a pure Ll-penalty lasso-style approach, and the dual-penalty approach
with data-driven penalty choice essentially turns off the L! penalty for

7For the Pastor and Stambaugh (2000) level shrinkage estimator, we show the expected
maximum squared Sharpe ratio under the prior on the x-axis, but it no longer coincides
with the « parameter in this case.
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this set of portfolios. However, if these portfolio returns are transformed
into their PCs, a sparse representation of the SDF emerges. These findings
are consistent with the point we made in Section 4.1 that the economic
arguments for a characteristics-sparse SDF are rather weak, while there
are good reasons to expect approximate sparsity in terms of PCs.

4.3.2 WRDS Financial Ratios (WFR)

The data set of 50 anomalies is special in the sense that all of these
characteristics are known, from the past literature, to be related to aver-
age returns. Our method is useful for checking for redundancy among
these anomalies, but this set of asset returns did not expose the method
to the challenge of identifying entirely new pricing factors from a high-
dimensional data set. For this reason, we now look at 80 factors formed
based on the WFR data set. The sample is daily from September 1964
to December 2017. Some of the characteristics in the WFR data set are
known to be related to expected returns (e.g., several versions of the
P/E ratio), but many others are not. It is therefore possible that a sub-
stantial number of these 80 factors are irrelevant for pricing. It will be
interesting to see whether our method can properly de-emphasize these
pricing-irrelevant factors and avoid overfitting them.

The contour map of OOS R? in Figure 4.3 looks quite similar to the
earlier one for the 50 anomaly portfolios in Figure 4.1. Unregularized
models (top-right corner) again perform extremely poorly with OOS R?
significantly below zero. L%-penalty-only based models (top edge of a
plot) perform well for both raw portfolio returns and PCs. L!-penalty-
only “lasso” based models (right edge of the plot) work poorly for raw
portfolio returns in the left-hand figure.

However, there are some differences as well. As can be seen toward the
right edge of the right-hand side figure, a PC-sparse SDF not only does
quite well in terms of OOS RZ, but it does so even without much L2-
shrinkage. A potential explanation of this finding is that the data mining
and publication bias toward in-sample significant factors may play a big-
ger role in the anomalies data set, which is based on published anomalies,
than in the WFR data set. As a consequence, stronger shrinkage of SDF
coefficients toward zero may be needed in the anomalies data set to pre-
vent these biases from impairing OOS performance, while there is less
need for shrinkage in the WFR data set because in- and out-of-sample
returns are not so different.

This explanation is further consistent with the fact that the OOS R2-
maximizing « ~ 1, which is much higher than in the anomalies data
set. The left-hand side plot in Figure 4.4 illustrates this even more
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Figure 4.3. O0S R? from dual-penalty specification (WER portfolios). 0OS
cross-sectional R? for families of models that employ both L! and L? penalties
simultaneously using 80 WFR portfolios (Panel a) and 80 PCs based on WFR
portfolios (Panel b). We quantify the strength of the L2 penalty by prior root
expected squared Sharpe ratio on the x-axis. We show the number of retained
variables in the SDE, which quantifies the strength of the L penalty, on the
y-axis. Both axes are plotted on logarithmic scale.

transparently by taking a cut along the top edge of the left-hand side
contour plot in Figure 4.3. The solid line shows the OOS R2. Its peak
is much farther to the right than in the analogous figure for the anoma-
lies data set (Figure 4.2), consistent with our intuition that WFR are less
likely to have been datamined in an early part of the sample compared to
the published anomalies and therefore do not require as much shrinkage.
Standard errors are smaller, too, due to more stable performance of WFR
portfolios across time periods relative to anomalies, which experienced
significant deterioration in the latest (not datamined) part of the sample
(McLean and Pontiff 2016).

The right-hand side graph in Figure 4.4 takes a cut in the contour plots
along the ridge of maximal OOS R? from bottom to top where we vary
sparsity and choose the optimal shrinkage for each level of sparsity. This
figure illustrates that as in the case of the 50 anomalies, there is little spar-
sity in the space of characteristics. Even so, sparsity is again much stronger
in PC space. A model with six factors delivers nearly maximum OOS R?.

In summary, the analysis of the WFR data set shows that our method
can handle well a data set that mixes factors that are relevant for pri-
cing with others that are not. If sparsity is desired, a moderate level of
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Figure 4.4. L2 model selection and sparsity (WFR portfolios). Panel (a) plots
the in-sample cross-sectional R% (dashed) and OOS cross-sectional R% based
on cross-validation (solid). In Panel (b), we show the maximum OOS cross-
sectional R2 attained by a model with 7 factors (on the x-axis) across all
possible values of L2 shrinkage for models based on original characteristics
portfolios (solid) and PCs (dashed). Dotted lines in Panel (b) depict —1 s.e.
bounds of the CV estimator.

L'-penalty can be used to omit the pricing-irrelevant factors, but a L2-
penalty-only method works just as well in terms of OOS R2.

4.3.3 Interactions

To raise the statistical challenge, we now consider extremely high-
dimensional data sets. We supplement the sets of 50 anomaly and 80 WFR
raw characteristics with additional ones constructed as second and third
powers and linear first-order interactions of the raw characteristics. This
exercise is interesting not only in terms of the statistical challenge but
also because it allows us to relax the rather arbitrary assumption that
characteristics-based factor portfolio weights are linear in (ranked and
normalized) characteristics.

In fact, for some anomalies like the idiosyncratic volatility anomaly, it is
known that the expected return effect is concentrated among stocks with
extreme values of the characteristic. Fama and French (2008) and Frey-
berger, Neuhierl, and Weber (2020) provide evidence of nonlinear effects
for other anomalies but in terms of portfolio sorts and cross-sectional
return prediction rather than SDF estimation. Furthermore, while there
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is existing evidence of interaction effects for a few anomalies (Asness,
Moskowitz, and Pedersen 2013, Fama and French 2008), interactions
have not been explored in the pre-ML empirical asset pricing literature
for more than these few—presumably a consequence of the extreme high
dimensionality of the problem. Interactions expand the set of possible pre-
dictors exponentially. For instance, with only first-order interactions of 50
raw characteristics and their powers, we obtain %n (n+1)+2n=1,375
candidate factors and test asset returns. For 80 WFR characteristics, we
obtain a set of 3,400 portfolios.

We construct the nonlinear weights and interactions as follows. For any

two given rank-transformed characteristics xé ,and x/ of a stock s at time

t, we define the first-order interaction characteristic x{, as the product of
two original characteristics that is further renormahzed using (4.26) as
follows: _ _
(xé,txé,t - nl, :1;1 xé,txls,t>
Z:llz1 xé,les,z - nll :lt 1 xs tXs,t
We include all first-order interactions in our empirical tests. In addi-
tion to interactions, we also include second and third powers of each
characteristic, which are defined analogously based on interaction of the
characteristic with itself. Note that although we renormalize all charac-
teristics after interacting or raising to powers, we do not rerank them. For
example, the cube of any given characteristic then is a new different char-
acteristic that has stronger exposures to stocks with extreme realization
of the original characteristic but has the same gross exposure (leverage).
The Internet Appendix of Kozak, Nagel, and Santosh (2020) illustrates
how this approach maps into more conventional two-way portfolio
sorts.

Due to the extremely high number of characteristics-based factors in
this case, our three-fold cross-validation method runs into numerical
instability issues in covariance matrix inversion, even with daily data. For
this reason, we switch to two-fold cross-validation. This gives us a some-
what longer sample to estimate the covariance matrix, and this sample
extension is sufficient to obtain stable behavior.?

Figure 4.5 shows contour maps of the OOS cross-sectional R? as a
function of « (on the x-axis) and the number of nonzero SDF coefficients
(on the y-axis). Plots for the raw portfolio returns are shown in the top
row, and plots for the PCs are in the bottom row. Focusing first on the

io_
xs,t -

(4.27)

8Because some interactions are missing in the earlier part of the sample, our sample
periods shorten to February 1974-December 2017 and September 1968-December 2017
for anomaly and WFR characteristics, respectively.
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Figure 4.5. 00S R2 from dual-penalty specification for models with interac-
tions. OOS cross-sectional R? for families of models that employ both L! and
L2 penalties simultaneously using portfolio returns based on interactions of 50
anomaly (Panel a) and 80 WFR (Panel b) characteristics and PCs of these port-
folio returns (Panels ¢ and d). We quantify the strength of the L2 penalty by
prior root expected squared Sharpe ratio on the x-axis. We show the number of
retained variables in the SDF, which quantifies the strength of the L1 penalty, on
the y-axis. Both axes are plotted on logarithmic scale.
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Figure 4.6. L1 sparsity of models with interactions. We show the maximum
0OS cross-sectional R2 attained by a model with # factors (on the x-axis)
across all possible values of L2 shrinkage for models based on interactions of
original characteristics portfolios (solid) and PCs (dashed). Panel (a) focuses on
the SDF constructed from PCs of interactions of 50 anomaly portfolios. Panel
(b) shows coefficient estimates corresponding to PCs based on interactions of
WEFR portfolios. Dotted lines depict —1 s.e. bounds of the CV estimator.

results for the raw portfolio returns, it is apparent that a substantial degree
of sparsity is now possible for both the anomalies and the WFR portfolios
without deterioration in the OOS R2. Strengthening the L'-penalty to
the point that only around 100 of the characteristics and their powers
and interactions remain in the SDF (out of 1,375 and 3,400, respectively)
does not reduce the OOS R? as long as one picks the L*-penalty optimal
for this level of sparsity. As before, an L!-penalty-only approach leads to
poor OOS performance.

The plots in the bottom row show contour maps for PCs. These results
are drastically different from the ones in the top row in terms of how
much sparsity can be imposed without hurting OOS performance. Very
few PCs—or even just one—suffice to obtain substantial OOS explana-
tory power. But here, too, the combination of sparsity with an optimally
chosen L? penalty is very important. Adding more PCs does not hurt as
long as substantial L? shrinkage is imposed, but it does not improve OOS
performance much either.

The two plots in Figure 4.6 take a cut in the contour plots along the
ridge of maximal OOS R? from bottom to top, where we vary sparsity
and choose the L? optimal shrinkage for each level of sparsity. These plots
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reinforce the point we noted from the contour plots that many of the pow-
ers and interactions of the characteristics are not adding pricing-relevant
information to the SDF and can be omitted. The SDF that attains the
highest OOS R? is relatively sparse with about 100 factors for both the
anomalies on the left-hand side and the WFR portfolios on the right-hand
side. However, as the wide standard error bands show, statistical precision
is quite low. The very large number of portfolios in this case pushes the
method to its statistical limits.

Overall, these results show that many of the powers and interactions of
characteristics seem to be redundant in terms of their pricing implications.
A majority of them can be excluded from the SDF without adverse impact
on OOS pricing performance. But as before, L2-shrinkage is crucial for
obtaining good OOS performance.

4.4 OuUT-OF-SAMPLE ASSET PRICING TESTS

Our cross-validation method evaluates a model’s performance on the part
of a sample not used in the estimation of the SDF coefficients; it is, there-
fore, by construction an OOS metric. Yet our choice of the strength of
regularization (L' and L? penalties) is based on the entire sample. It is
possible that the penalty that is optimal within one sample does not gen-
eralize well on new or fully withheld data. To address this potential issue,
we now conduct an OOS test with a sample withheld from penalty esti-
mation. Using our L2-penalty method, we conduct the entire estimation,
including the choice of penalty, based on data until the end of 2004.
Post-2004 data is completely left out of the estimation. We then eval-
uate performance of the estimated SDF in the 2005-2017 OOS period.
This analysis also allows us to assess the statistical significance of our ear-
lier claim that characteristics-sparse SDFs cannot adequately describe the
cross-section of stock returns.

This OOS exercise further helps to gain robustness against the effects
of data mining in prior published research. Especially for the data set
of 50 known anomalies, there is a concern that the full-sample aver-
age returns may not be representative of the ex ante expected returns
of these largely ex-post selected portfolios. Implicitly, our analysis so far
has already employed some safeguards against data mining bias. For data-
mined spurious anomalies, there is no economic reason why their average
returns should be related to exposures to high-variance PCs—and if they
are not, our L? and dual-penalty specifications strongly shrink their con-
tribution to the SDFE. Even so, an OOS test on a fully withheld sample
of post-2004 data provides additional assurance that the results are not
unduly driven by data-mined anomalies.
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Our analysis is very much in the spirit of Barillas and Shanken (2018)
in that we compare the Sharpe ratios of the MVE portfolios implied by
competing factor models (rather than the alphas of some “test assets”),
albeit with an OOS focus. We proceed as follows. We first orthogonalize
all factor portfolio returns with respect to the market using market betas

estimated in the pre-2005 sample.” Given the estimate b based on our
L?-penalty Bayesian method in the pre-2005 sample, we construct the

time series of the implied MVE portfolio gft in the 2005-2017 OOS
period. We focus on three sets of portfolios in constructing an SDF: the
50 anomaly portfolios, the 80 WFR portfolios, and the interactions and
powers of 50 anomaly characteristics.!” As in our earlier estimation, we
choose penalties by three-fold cross-validation (two-fold if interactions
are included) but with shorter blocks because we only use the pre-2005
sample here.

We then estimate abnormal returns of this OOS-MVE portfolio with
respect to three characteristics-based benchmarks: the capital asset pric-
ing model (CAPM); the six-factor model of Fama and French (2016)
(with five cross-sectional factors, including the momentum factor); and
our dual-penalty model where we have set the L' penalty such that the
SDF contains only five cross-sectional characteristics-based factors. To
compare the models on equal footing, we construct the MVE portfo-
lio implied by these benchmarks. Since we work with candidate factor
returns orthogonalized to the market return, the benchmark in the CAPM
case is simply a mean return of zero. For the Fama-French six- factor

model, we estimate the unregularized MVE portfolio weights, =X ; f f
from the five nonmarket factors in the pre-2005 period.!! We then apply
these weights to the five factor returns in the OOS period to construct a
single benchmark return. Finally, for the dual-penalty sparse model with

five factors, we estimate b in the pre-2005 period and then apply these
optimal portfolio weights to returns in the OOS period. If our earlier
claim is correct that the SDF cannot be summarized by a small number of
characteristics-based factors, then our OOS-MVE portfolio constructed
from the full set of candidate factors should generate abnormal returns
relative to the MVE portfolio constructed from these sparse benchmarks.

9The resulting abnormal returns are Fi = IEU — BiRyn,t, where F,-J is the raw portfolio
return and Ry, is the market portfolio return. In our previous analysis, we used the full
data to estimate ;.

10We do not report results for interactions of WFR portfolios due to issues in estimating
covariances in an even shorter sample with an extremely high number of characteristics-
based factors in this case.

L As before, we orthogonalize these factors (SMB, HML, UMD, RMW, CMA) with
respect to the market using factor loadings estimated in the pre-2005 sample.
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TaBLE 4.1
MVE portfolio’s annualized OOS « in the withheld sample (2005-2017)
The table shows annualized alphas (in %) computed from the time-series
regression of the SDF-implied OOS-MVE portfolio’s returns (based on
L2-shrinkage only) relative to four restricted benchmarks: CAPM,
Fama-French six-factor model, optimal sparse model with five factors, and
optimal PC-sparse model with five PC-based factors. MVE portfolio
returns are normalized to have the same standard deviation as the
aggregate market. Standard errors are in parentheses.

Benchmark
SDF factors CAPM FF 6-factor Char.-sparse PC-sparse

50 anomaly portfolios 12.35 8.71 9.55 4.60
(5.26) (4.94) (3.95 (2.22)
80 WEFR portfolios 20.05 19.77 17.08 3.63
(5.26) (5.29) (5.05) (2.93)
1,375 interactions of 25.00 22.79 21.68 12.41
anomalies (5.26) (5.18) (5.03) (3.26)

Table 4.1 confirms that the MVE portfolio implied by our SDF per-
forms well in the withheld data. The table presents the intercepts (alphas)
from time-series regressions of the OOS-MVE portfolio returns on the
benchmark portfolio return in percentage, annualized, with standard
errors in parentheses. To facilitate interpretation of magnitudes, we scale
MVE portfolio returns so that they have the same standard deviation as
the market index return in the OOS period. The first column shows that
the OOS-MVE portfolio offers a large abnormal return relative to the
CAPM for all three sets of candidate factor returns. For example, for the
OOS-MVE portfolio based on the 50 anomalies, we estimate an abnor-
mal return of 12.35%, which is more than two standard errors from zero,
despite the short length of the evaluation sample. The abnormal returns
are even larger for the other two sets of portfolios. As the second column
shows, the abnormal returns are very similar in magnitude for the FF six-
factor model, and we can reject the hypothesis of zero abnormal returns
at a 5% level or less for two of the three sets of candidate factor port-
folios. The third column shows that the results for the sparse five-factor
model based on our dual-penalty method is almost identical to the FF six-
factor model. Overall, the evidence in this table confirms our claim that
characteristics-sparse models do not adequately describe the cross-section
of expected stock returns.

In our earlier analysis, we also found that sparse models based on PCs
do much better than sparse characteristics-based models. This result also
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holds up in this OOS analysis. The last column shows that the PC-sparse
MVE portfolio, which includes only five optimally selected PC-based
factors using our dual-penalty method, performs uniformly better than
characteristics-sparse models. Abnormal returns are much smaller and
not statistically significantly different from zero for 80 WFR portfolios
and only marginally significant for 50 anomaly portfolios.

4.5 RELATED RECENT RESEARCH

ML applications in cross-sectional asset pricing are currently a very active
area of research. A number of recent papers use supervised learning
techniques and offer insights that relate to the issues discussed in this
chapter.

One line of work modifies principal components analysis (PCA) to
impose, as in the SDF estimation in this chapter, economically motivated
links between first and second moments of returns. Lettau and Pelger
(2018) propose a variant of PCA where the factor extraction puts weight
not only on explaining comovement, but also on explaining mean returns.
Kelly, Pruitt, and Su (2019) use instrumented principal components
(IPCA) to perform dimensionality reduction of the firm characteristics
space. This method extends projected-PCA (Fan, Liao, and Wang 2016)
by letting assets’ loadings on latent factors depend on a vector of charac-
teristics. IPCA then allows simultaneous estimation of latent factors and
the parameters that relate characteristics to factor loadings. To imple-
ment this method, a researcher needs to pre-specify the number of latent
factors. One can think of this preselection of a few dominant sources
of covariance as pricing factors as a crude way of imposing the prior
beliefs that high Sharpe ratios are more likely to come from major sources
of covariances than from low-eigenvalue PCs. Rather than imposing a
PC-sparse SDF representation ex ante, the method we discussed in this
chapter automatically recovers such sparsity if it improves out-of-sample
performance.

Freyberger, Neuhierl, and Weber (2020), Han, He, Rapach, and Zhou
(2019), and Feng, Giglio, and Xiu (2020) focus on lasso-style estima-
tion with L!-norm penalties. They find a substantial degree of sparsity,
suggesting substantial redundancy among cross-sectional stock return
predictors. Yet, the results in this chapter suggest that, for the purposes
of SDF estimation with characteristics-based factors, a focus purely on
factor selection with L! penalty is inferior to an approach that includes
an L? penalty that can shrink SDF coefficients toward zero to varying
degrees without imposing sparsity on the SDF coefficient vector. This
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is in line with evidence from the statistics literature that lasso does not
perform well when regressors are correlated, and that ridge regression
(with squared L?-norm penalty) or elastic net (with a combination of
L' and L? penalties) delivers better prediction performance than lasso
in these cases (Tibshirani 1996; Zou and Hastie 2005; see also our
discussion of the issue in Section 2.2.1).

The analysis in this chapter allowed for simple forms of nonlinear-
ity through characteristics interactions and powers of characteristics. A
number of papers explore more sophisticated approaches in dealing with
nonlinearity. Kozak (2019) builds on the approach in this chapter by
employing regularization mapped into economic restrictions and SDF
estimation, but using the kernel trick method to extend the set of charac-
teristics to a potentially infinite-dimensional set of nonlinear functions of
the original characteristics. Gu, Kelly, and Xiu (2020b) extend the ICPA
approach of Kelly, Pruitt, and Su (2019) by using an autoencoder neu-
ral network method that allows factor loadings to depend nonlinearly
on characteristics. Feng, Polson, and Xu (2018), Chen, Pelger, and Zhu
(2019), and Gu, Kelly, and Xiu (2020a) also study neural networks to
allow for nonlinearities. An interesting finding that emerges from the lat-
ter two papers is that the most important nonlinearities appear to be
those arising from interactions between characteristics rather than non-
linearity in individual characteristics. This is consistent with the gains
from including characteristic interactions that we saw in Table 4.1 in this
chapter.

Moritz and Zimmermann (2016) and Bryzgalova, Pelger, and Zhu
(2019) use tree-based approaches to entertain nonlinearity. Trees offer
a natural generalization of conventional characteristics-sorted portfolios
to allow for interactions between characteristics, but avoiding the curse
of dimensionality. An important question in applying these methods to
asset pricing is how to prune, or otherwise regularize, trees. Ideally, one
would like to bring in economically interpretable restrictions, as we did
in this chapter through the penalty function. Bryzgalova, Pelger, and Zhu
(2019) tackle this problem by pruning and shrinking the tree based on
a penalized mean-variance optimization problem similar to the one we
employed in this chapter.

For interpreting the economic significance of the return predictability
captured by these ML methods, it is useful to know to what extent the
return predictability derives from stocks that are small and illiquid. To
some degree, it is to be expected that predictability-inducing mispricings
are bigger in the small-stock segment that attracts little interest by large
investment managers. But economic significance would be substantially
diminished if most or all of the profits of an ML-based strategy came
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from this segment. This is why the micro-cap stocks were completely
excluded from analysis in this chapter and in many of the studies cited
above, too. Avramov, Cheng, and Metzker (2019) examine more broadly
the sensitivity of various ML-based portfolio returns to transaction costs
and illiquidity. Another approach to dealing with illiquidity and trans-
action costs is to explicitly include transaction-cost optimization in the
ML problem. DeMiguel, Martin-Utrera, Nogales, and Uppal (2019) find
that doing so can increase the number of relevant characteristics under
lasso-style estimation with L'-norm penalty.

4.6 CONCLUDING REMARKS

This chapter showed that ML tools have natural applications in research
on the cross-section of stock returns. Given the huge number of firm char-
acteristics that seem to have cross-sectionally predictive information, the
ML toolbox allows researchers to embrace the high dimensionality of
this setting rather than artificially impose sparsity with ad hoc selected
variables in small-scale models.

At the same time, the results in this chapter, and elsewhere in the recent
literature, further underscore that cross-sectional asset pricing applica-
tions are quite different from typical ML applications in other fields.
Nonlinearities play a more limited role than elsewhere in the ML space.
Studies using neural networks and tree-based methods point toward char-
acteristics interactions as a relevant form of nonlinearity, but other types
of nonlinearities seem less important.

Unlike in many other ML applications, sparsity also seems limited.
There is not a lot of redundancy in the predictive content of different
firm characteristics. For some data sets—e.g., the ones in this chapter
where we include an extremely large number of interactions and powers
of stock characteristics—allowing for sparsity can help eliminate some
useless factors, but the number of relevant characteristics is still very
large. The multi-decade quest in the empirical asset pricing literature to
summarize the cross-section of stock returns with sparse characteristics-
based factor models containing only a few (e.g., three, four, or five)
characteristics-based factors therefore seems futile.

Given the low signal-to-noise ratio in asset returns, an extremely flexi-
ble and purely data-driven approach to return prediction seems unlikely
to succeed. Within the analysis in this chapter, injecting a modest dose
of economic reasoning helped obtain a better-performing estimator. For-
mulating the approach in a Bayesian framework provided an avenue to
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bring in economically motivated reasoning in the choice of prior beliefs.
We derive our particular L2-penalty specification from an economically
plausible prior that existence of near-arbitrage opportunities is implausi-
ble, and major sources of return co-movement are the most likely sources
of expected return premia. As Kozak, Nagel, and Santosh (2020) discuss
in more detail, modifying the prior beliefs toward specifications that are
less well motivated by economic considerations would result in worse
predictive performance. One interesting challenge for future research
is to investigate whether one can also develop economically motivated
approaches to regularization and hyperparameter estimation in other ML
methods such as neural networks, trees, and random forests.



Chapter 5

ML AS MODEL OF INVESTOR
BELIEF FORMATION

IN THE PREVIOUS CHAPTERS, we took the perspective of a statistician
studying historical asset price data ex post. The statistician uses the ML
toolbox to extract predictable patterns from the data with the objective
of constructing useful asset return forecasts. In these analyses, we took
the asset price data as exogenously given. The statistician was purely an
outside observer with no effect on market prices.

If an outside observer of financial market data is confronted with
a high-dimensional set of potential predictors, surely the investors in
financial markets whose trading activity generated the price data face
a similar high-dimensional prediction problem. For example, to value a
stock, investors must forecast cash flows over multiple horizons stretching
out many years into the future. The set of variables that could poten-
tially have predictive information for these cash flows is immensely large.
This set includes accounting data, textual information in the firm’s peri-
odic reports, the firm’s announcements about plans and projects, industry
conditions, macroeconomic variables, and so on.

Yet, existing asset pricing models do not put investors in such complex
environments. In fact, most standard models assume rational expecta-
tions, which means that investors are assumed to already know the model
generating the cash flows, including the values of the model’s parame-
ters. In other words, the problem of learning the predictive relationship
between observed covariates and future cash flows has been assumed
away. This assumption that investors have precise knowledge of the model
and its parameters seems untenable once we consider the complexity of
the environment in which actual real-world economic agents must solve
forecasting problems. There is a literature in asset pricing and macroeco-
nomics in which rational economic agents learn from observed data about
parameters and model specification, and possibly the behavior of other
agents. But the learning problem agents face in these models is typically
low-dimensional. This understates the difficulty of the agents’ learning
problem.

One may therefore wonder whether empirical properties of investors’
forecasts and decisions that seem anomalous from the perspective of stan-
dard models of rational belief formation could actually be a consequence
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of the oversimplification of the learning problem in these models. For
example, in the large “factor zoo” in empirical cross-sectional asset pric-
ing that we looked at in the previous chapter, could it be that some of these
return predictability patterns in historical data are actually a consequence
of investor learning about the predictive content of these variables? Is
there perhaps a connection between the rapid growth in recent decades
of the set of potential predictors of stock fundamentals that are observable
to investors and the growth in the number of variables that researchers
have found to predict returns (Harvey, Liu, and Zhu 2016)?

The ML methods we have reviewed in the previous chapters provide
an attractive blueprint for modeling investor learning in high-dimensional
environments. ML methods not only deal with the complexity of the
learning environment in a sophisticated way, without artificially forcing
the learning problem to be low-dimensional, but they also have some
resemblance to the statistical methods that sophisticated quantitative
investors use in the real world. Thus, rather than using the ML tools to
analyze data ex post, we can let investors inside a theoretical model use
them to learn about the world and to price assets.

In this chapter, I discuss some basic steps toward an asset pricing model
in which investors face a high-dimensional learning problem. The material
in this chapter is a simplified version of the analysis presented in Martin
and Nagel (2019). Investors in this model use a set of covariates to fore-
cast firm cash flows and they price stocks based on these forecasts. To
make these forecasts, investors have to estimate the functional relation-
ship between the covariates and future cash flows from observed historical
data. That investors face this learning problem has a profound effect on
asset price properties, especially when the number of potentially relevant
predictor covariates is large relative to the number of stocks that generate
the historical data that investors learn from.

Investors’ learning problem in this model is, in many ways, still an
overly simplified representation of the learning problem faced by real-
world investors. For example, the set of relevant predictor variables is
known, the functional form of the predictive relationship is linear and
known (only parameters need to be learned), and the stochastic process
that generates stock fundamentals is time-invariant. Moreover, investors
in this model optimally digest the available information without frictions.
For this purpose, they use the Bayesian regression tools we discussed in
the previous chapters. Keeping investors’ problem simple and their belief
formation statistically optimal has the effect of minimizing the estimation
errors investors make when they learn about the cash flow process.

Even so, when an econometrician applies standard return predictabil-
ity tests to returns generated in this economy, returns appear predictable
in ways that resemble the effects of risk premia and investor behavioral
biases, despite the fact that neither risk premia nor behavioral biases
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exist in this model. The high dimensionality of investors’ learning prob-
lem changes the equilibrium properties of asset prices. When investors’
learning problem is low-dimensional, returns are close to being mar-
tingale differences from the econometrician’s viewpoint. But under high
dimensionality, this is no longer the case.

The relatively simple linear environment with known functional forms
is a good starting point for analyzing these questions, but it still leaves
unexplored many questions of how investors form beliefs about value-
relevant variables in a more complex environment. Studying investor
learning with ML methods that are suitable for nonlinear settings with
unknown functional forms may offer additional insights into asset
price behavior in financial markets. The next chapter will offer some
thoughts on directions that future research could take in exploring these
questions.

5.1 THE ASSET MARKET

I begin by laying out the environment in which investors learn about the
process that generates asset cash flows. There are N assets and time is
discrete, t € {1,2,...}. Each asset is associated with | firm characteristics
observable to investors that we collect in the N x | matrix X. We assume
that rank(X) =]/, so none of the characteristics are redundant, and that
firm characteristics are normalized such that Nl] tr X'X=1.

The assets pay dividends, collected in the vector y,. Dividend growth,
Ay, =y, —y,_1, is partly predictable based on the firm characteristics X:

Ay, =Xg+e, e~N(0,In). (5.1)

The matrix X contains all variables that investors can condition on in
forecasting dividend growth. This cash flow specification is, in many ways,
still much simpler than the cash flow process that real-world investors
have to learn about.

First, the relationship between cash flow growth and characteristics is
linear, and we assume investors know that it is linear. In reality, there are
likely to be nonlinear relationships between covariates and future cash
flow growth. But this assumption is not as limiting as it may seem as
one could accommodate nonlinearity in this specification by including
nonlinear functions of characteristics in the matrix X.

Second, we assume that the matrix X is constant over time. In reality,
firms’ characteristics change. To some extent, we could accommodate this
in our setting by thinking of y, as a vector of payoffs for hypothetical
characteristics-constant firms. This means that we would have to reshuffle
the actual firms each period so that each element of y, is always associated
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with the same characteristics. What our framework does not allow for is
a change over time in the cross-sectional moments of the characteristics
in X. With a stochastically changing X it could happen, for example, that
two characteristics that are highly correlated in one period are no longer
strongly correlated in future periods. This would make investors’ learning
and forecasting problems harder.

Third, while we consider a fairly high-dimensional environment in with
J can be close to N, we assume that | < N. The set of characteristics avail-
able to real-world investors is potentially very large and so ] > N might be
reasonable. An extension to allow for ] > N would be relatively straight-
forward, but at the cost of considerably greater notational complexity.
The effects of learning on asset price properties can be seen more clearly
in the simpler | < N setting.

Overall, our model therefore likely understates the difficulty of the
learning problem that actual investors face in their investment decision-
making process. Even so, as analysis in this chapter will show, the
properties of asset prices are strongly affected by learning. Extending
the model to take into account realistic additional complications in the
learning problem would further enhance these effects.

The properties of the parameter vector g, and investors’ beliefs about
the values of these parameters, play an important role in our analysis.
Specifically, the magnitudes of the elements of g determine the proportion
of cash flow growth variation that is predictable with X. Therefore, when
investors learn about g from historical observations of Ay, the magnitudes
of the g elements determine the ratio of signal (variance of Xg) to noise
(variance of e) in Ay.

We assume that the vector g is drawn from a multivariate normal
distribution,

g~N (0, ;I]>, (5.2)

where 0 is a constant. We think of g as drawn by nature, at the very begin-
ning of this economy, before any dividends are realized and any assets
priced. It then stays constant through time. The specification of variances
and covariances as proportional to 1/] in (5.2) ensures that the signal to
noise ratio is invariant to J. To see this, note that if investors had perfect
knowledge of the parameter vector g, investors would be able to fully pre-
dict the Xg component of Ay, in (5.1). One can show that this predictable
component has the cross-sectional variance % E[g'X'Xg]=0.!

LApply the trace operator, use its cyclical properties, and use the normalization of
tr(X’X) = NJ from above.
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5.1.1 Investors

Investors are homogeneous and risk-neutral. We further assume that the
interest rate is zero. This means that return predictability cannot be a
consequence of risk premia or time-varying interest rates. By abstracting
from risk premia, we intentionally make it easy for an econometrician to
test market efficiency in our setting. Since risk premia are absent, there
is no joint hypothesis problem due to unknown risk pricing models. Yet,
as we will show, the presence of investors’ learning problem still makes
interpretation of standard market efficiency tests tricky.

Homogeneity of investors is a simplifying assumption. As a first cut to
this problem, we want to keep the analysis as transparent as possible. But
this is not to say that heterogeneity is unimportant. It would be interest-
ing and realistic to extend the setting to allow for heterogeneity, perhaps
with investors differing in their methods of data analysis or in the data
that they observe. Heterogeneity would also introduce the possibility of
investors having to learn about the models and beliefs of other investors.
Such learning about endogenous objects could potentially introduce addi-
tional interesting asset price dynamics. In this analysis here, however, we
want to first see to what extent asset price properties change when we
introduce learning and high dimensionality in a homogeneous investor
setting.

$5.1.2 Pricing

To keep the asset valuation simple, we focus on the pricing of one-period
dividend strips, i.e., the claim to a single dividend one period ahead. The
vector p, represents the prices, at time ¢, of claims to dividends that will
be paid at time ¢ + 1. This focus on dividend strips is not as restrictive as it
may seem. One can think of one period in this model as a long time span,
say a decade, and the dividend strip payoff as the cash flows of a long-
lived stock compressed into a single cash flow that occurs at the typical
duration of a stock.

Given risk neutrality and zero interest rate, p, is then equal to the
investors’ expectation of next-period dividends,

Pr=Ey 1=y, +EAy, 1 =y, +E (Xg+e11)

The issue of central interest in this chapter is how investors form these
expectations E; [-].

As a benchmark, consider the case of rational expectations where
investors are assumed to know g. In this case, there is no learning problem.
Dividend expectations are constant at E; (Xg + e;11) =Xg. Prices under
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rational expectations therefore are

b =y, +Xg, (5.3)

and realized price changes, which we refer to from now on as “returns,”
are

1 =Y — D =AY — Xg=ery1. (5.4)

The ultimate goal of our analysis is to understand how investors’ belief
formation affects the properties of asset prices. In particular, we are inter-
ested in finding out whether belief formation based on learning could
induce return predictability. In the existing asset pricing literature, return
predictability in the cross-section of stock returns is commonly attributed
to the presence of risk premia or behavioral biases of investors. But here
we want to see whether learning in a high-dimensional environment could
be an alternative source of return predictability.

5.1.3 An Econometrician Observer

For this purpose, we consider an econometrician who observes the assets’
realized returns in this economy. The econometrician uses these returns
to run standard regression-based return predictability tests. More pre-
cisely, the econometrician asks whether the firm characteristics X can be
used to predict returns in the cross-section. Regressing realized returns on
characteristics, the econometrician obtains the vector of coefficients:

ht+1 = (X/X)_lx/rt_;,_l. (5.5)

In the case of investors with rational expectations in (5.4), where 7,1 =
e;1 1, returns are unpredictable and

bi1=(X'X)" X'ery 1. (5.6)

Any deviations from zero of the elements of b;, 1 are purely due to estima-
tion error, induced by noise e;,1 that ended up, by chance, having some
correlation with the columns of X. This is the null hypothesis that under-
lies a vast literature on market efficiency tests and cross-sectional stock
return anomalies. Given that the elements of e;; 1 are distributed N'(0, 1),
it would follow, under this null, using the usual OLS variance formulas
(with known residual variance), that

Nhy1 ~N <O,N(X’X)‘1) , (5.7)

which provides the basis for standard significance tests in return pre-
dictability regressions.
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For a test of the null that all elements of b, are jointly zero, one
can form a statistic that would have a x? distribution under the rational
expectations null hypothesis:

b1 X' Xby1 ~ xf- (5.8)

This quadratic form is also, at the same time, measuring the return of a
portfolio that weights stocks based on in-sample predicted returns,

1

Xt (5.9)

wy =
With these weights, the portfolio return is
1
FIS 41 = Wirip1 = N 1 X Xy (5.10)

An important point to emphasize—and one that we will come back to—is
that this portfolio is an in-sample trading strategy. The portfolio weights
use information that real-time investors would not have at the beginning
of period ¢+ 1 because the portfolio weights depend on the regression
coefficients b;, 1 that are estimated from #+ 1 returns. Hence, a decision
maker restricted to using only data available in real time would not be
able to construct these return predictions at the beginning of period #+ 1.
Similarly, tests based on the statistics (5.7) and (5.8) are tests of in-sample,
not out-of-sample return predictability.

In the rational expectations case, the distribution (5.8) implies that
if the econometrician were to repeatedly sample from this economy, in
expectation the portfolio would have the return

Ergm= (5.11)

N
Under rational expectations, prices are martingales and returns are unpre-
dictable, in-sample and out-of-sample. The expected value of 775,41 is
greater than zero purely because of in-sample overfitting of noise. Just as
one needs to adjust R* measures for in-sample overfitting, one needs to
compare this portfolio return to the y2-distribution in (5.8) rather than
zero in order to test the rational expectations null.

Rejections of the null based on test statistics like (5.8) are typically
interpreted as an indication that some combination of risk premia and
behavioral biases of investors must be present. But when investors are
not endowed with perfect knowledge about g and must estimate it from
observed historical data, it is not clear that this interpretation is valid.
For this reason, we now analyze what happens to the properties of return
predictability tests when the econometrician applies these tests to asset
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price data from an economy in which investors must learn about g from
observed historical data.

5.2 INVESTOR LEARNING

To learn about g from historical data, investors apply statistical analysis.
At every point in time, they use the cash flow growth data available until
this point to estimate g. In principle, there is a wide variety of statisti-
cal methods, including the nonlinear ML methods that we discussed in
previous chapters, that investors might rely on for this purpose. But here
we assume that investors know that there is a linear relationship between
the firm characteristics in X and cash flow growth, as specified in (5.1).
Given this knowledge, investors will run linear regressions to estimate g.
However, as we will see now, there are still additional choices we need to
make within the category of linear regression methods in order to fully
pin down investors’ belief formation mechanism.

5.2.1 OLS Learning

As a heuristic approach to the learning problem, we could assume that
investors simply run OLS regressions. Since applied statistical analyses
by forecasters and analysts often use OLS regression, this approach is not
only simple, but also has intuitive appeal. As we will see, though, in a
high-dimensional environment, we will need to apply some modifications
to obtain a plausible model of investor belief formation. But OLS learning
is a good starting point before we introduce these modifications.

Since cash flow growth in (5.1) is IID, historical data over ¢ periods can
be summarized by the sample average

1
Ayt=;ZAys, (5.12)
s=1

and a pooled cross-section and time-series regression of cash flow growth
on X is equivalent to a regression of Ay, on X:

gors, = (X'X) " XAy, (5.13)

This model of learning is a cross-sectional analog to the time-series learn-
ing models in Lewellen and Shanken (2002) and Timmermann (1993).
The Lewellen-Shanken model is a special case of the OLS learning model
here with a single asset and X reduced to a scalar equal to 1.
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If investors form expectations based on the OLS estimates g¢; 5 ;, then

]EtAyt +1=X&0Ls, and we get equilibrium prices

p:=y:+X8ors: (5.14)

and realized returns

141 =Y1 — Py
=X(g—8ors,) T er+1- (5.15)

From the investors’ viewpoint at time ¢, the expectation of g is equal to
8015 As a consequence, investors perceive returns as unpredictable, as
in the rational expectations case earlier.

However, from the viewpoint of an econometrician who can observe
data before and after period ¢, the returns in (5.15) appear predictable.
The source of this predictability is a component in realized returns that
is induced by investors’ estimation error g —gpys, When estimating g.

: 5 155 S 1yt
Using the fact that go15,=Xg+X (X'X)"" X'e;, where &= > _(_ e,
we can write the realized returns as

e =—XX'X) X8 + ey (5.16)

Written this way, we see how the noise, e, in historical average dividend
growth generates the estimation error that then contaminates realized
returns: by chance, the columns of X have some degree of correlation with
é:. This pushes g g, away from g, prices away from the rational expecta-
tions prices in (5.3), and returns away from e;, 1. As a consequence, when
the econometrician regresses realized returns in period #+1 on X, the
regression coefficients are different from those in the rational expectations
case (5.6). The econometrician obtains

i1 =—(X'X) "' X'& + (X'X) " X'ery 1. (5.17)

Compared with the rational expectations case in (5.6), there is now an
additional term on the right-hand side. This additional term arises from
the estimation error component of realized returns in (5.16).

Now consider again, as in the rational expectations case, a portfolio
with weights w; = %Xht_H based on in-sample predicted returns from
the regression in (5.17). In this case, the expected value of the portfolio
return

1
TIS 41 =Witep1 = Nh;+1X/Xht+l (5.18)
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If the econometrician adjusts Ers ;41 for the expected return under the
rational expectations null (5.11) by subtracting J/N, this still leaves the
term tLN If J is very small relative to N, this term may be negligibly
small. However, in the high-dimensional case, when | is comparable
in magnitude to N, the econometrician will find that this in-sample
trading strategy has a substantial positive expected return in excess
of the rational expectations benchmark. Accordingly, if the econome-
trician compares the realized value of 775,41 to the x2-distribution in
(5.8) that the portfolio return would have under the rational expec-
tations null, she will likely find that 7/g;,1 is far in the tail of this
distribution.

In this model, unlike in a rational expectations setting, it would be
incorrect to conclude that a finding of E g,y > J/N indicates that risk
premia exist or that investors must have behavioral biases. In this model,
investors are risk neutral and hence risk premia are zero. Investors also
do not have behavioral biases (with the caveat that we still have to eval-
uate whether OLS learning is the optimal learning approach here). The
economic explanation is different: the first term in (5.19) that generates
the high expected returns relative to the rational expectations benchmark
is a consequence of investor learning about g.

For example, when a firm characteristic (a column of X) happens to be
positively correlated with e; in the sample investors observe up to time
t, then investors will end up being too optimistic, relative to the rational
expectations benchmark, about stocks with a positive value of this char-
acteristic. Hence, their price is too high, and future returns are low. The
opposite is true for stocks with low values of this characteristic. An econo-
metrician with access to ¢+ 1 return data can then pick up this in-sample
return predictability by regressing r;,1 on this characteristic.

While OLS learning has intuitive appeal due to its widespread use of
OLS regressions in applied statistics and forecasting, it is an ad hoc app-
roach. It is not clear that this is the optimal learning approach for
investors in this setting. And if it is not the optimal approach, could it
be that the in-sample return predictability that arises with OLS learning
is just a consequence of investors using a suboptimal approach?
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5.2.2 Bayesian Learning with Informative Prior

The optimal approach for rational investors to learn about g is to apply
Bayesian updating. To implement Bayesian updating, we need to specify
the prior beliefs that investors hold about the distribution of g before
seeing any cash flow data. We assume that this distribution is multivariate
normal:

g~N(O,Xy). (5.20)

That prior beliefs are centered around zero means that investors a pri-
ori, before seeing any data, don’t know which characteristics predict cash
flow growth by how much and in which direction. This seems plausible.
But what about the prior covariance matrix X2 We assume that X is
proportional to the identity matrix so that all the predictor variables are
on an equal footing from the prior perspective. The remaining task then
is to specify the proportionality constant. A conservative assumption—in
the sense that it minimizes investors’ estimation errors that then show up
as predictable components in returns—is that investors’ prior is objec-
tively correct: we give investors the knowledge of the true distribution in
(5.2) from which the elements of g are actually drawn. Investors’ prior
covariance matrix therefore is g = %I 1, and hence prior beliefs are

g~N<0, ?q) . (5.21)

In this framework, with normally distributed sources of uncertainty,
and a linear cash flow generating process (5.1), Bayesian updating implies
that investors’ posterior mean is given by the Bayesian regression estima-
tor (2.22) that we discussed in Section 2.4:

J

-1
—1 X'Ay,. 5.22

8= <X/X+

Using an eigendecomposition ~X'X =QAQ', where A =diag(A1, ..., A))
and Q is an orthogonal matrix of eigenvectors, we can rewrite the
posterior mean as the OLS estimator shrunk by a shrinkage matrix Ty,

g, =T.XX)"'X'Ay,, (5.23)

where the symmetric matrix I'; takes the form

-1
rt=Q(I,+NL9tA—1) 0. (5.24)
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Shrinkage is a consequence of the informative prior for g. To see explicitly

~1
what the degree of shrinkage depends on, note that (I 1+ NLmA_l) is

diagonal with elements
Aj
4
A+ Nt

along its diagonal. Thus shrinkage is strong if ¢ or 6 are small, or J/N
is large, or along principal components with small eigenvalues. In these
cases, the prior’s influence on the posterior is strong because the observed
data is not very informative relative to the prior.

The derivations above outline the mechanics of Bayesian updating.
But there is an important underlying economic interpretation. Economic
plausibility calls for an informative prior in which the prior covariance
parameter 6 is not extremely large so that the elements of g cannot be arbi-
trarily big. Extremely big g would imply that the cross-sectional variance
of the predictable component of cash flow growth, Xg, is huge relative to
the variance of unpredictable noise e. This would mean that most of cash
flow growth variation is predictable based on firm characteristics—which
is not a plausible representation of economic reality. For this reason, it
makes economic sense for investors to believe, a priori, that extremely
large magnitudes of g are unlikely.

This also makes clear why OLS learning lacks economic plausibility in
this setting. OLS learning arises as the special case in which the prior is
diffuse, with 8 — oo. In this case, I'; converges to an identity matrix and
g, to the OLS estimator. Having investors learn with OLS therefore effec-
tively assumes that investors ignore that extremely large magnitudes of
predictable cash flow growth components are economically implausible.

In a low-dimensional setting where J/N is very small, this would not
matter much. As we can see from the expression in (5.24), T'; converges
to an identity matrix if J/N — 0 and hence the posterior mean converges
to the OLS estimator. OLS learning may therefore be a fine as a model of
investor belief updating in a low-dimensional setting.

But if ] is close to N in magnitude, the situation is very different. In
this case, there is a big wedge between the OLS estimator and the pos-
terior mean in (5.23). OLS learning would not only be economically
implausible in this case, but it would also lead to poor forecast perfor-
mance. Figure 5.1 illustrates this. It shows the mean-squared error in
investors’ forecasts of Ay, when investors have observed, and learned
from, one period of cash flow realizations Ay,_;. For this example, we
set =900, N=1000, the elements of X are drawn independently from
a standard normal distribution, and the vector g is drawn from the prior
distribution (5.21) with 6 =0.5. The solid line shows the mean-squared
error
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Figure 5.1. Cash flow forecast mean-squared error

1
MSE =3 [Ay, = Xg,_1 0] [Ay — X&,-16)]
when investors entertain different values for 0 in their prior.

The case where investors form prior beliefs based on 6 = 0.5 is the case
in which they have an objectively correct prior. In this case, the prior
variance /] is approximately 5.6 x 10~*. This is where the forecast MSE
reaches its minimum in Figure 5.1. OLS learning would be the limit with
6 — oo and hence prior variance going to infinity. As the figure shows,
going in this direction worsens the forecast performance. In fact, when
investors’ prior variance is substantially higher than the variance of an
objectively correct prior, there is a point where the forecast MSE is higher
than the forecast MSE of a random-walk forecast that simply sets the
estimated g to zero and forecasts Ay, =0. The MSE of this random-walk
forecast is shown as the dotted line. This illustrates how poorly a forecast
based on a diffuse prior performs when ] is big.

Figure 5.1 shows another interesting variation where we let the X
matrix be stochastic. We redraw the elements of X each period. Cash
flows are then generated as Ay, =X;_18 + e;. Investors regress Ay, ; on
X, to learn about g. To forecast Ay, they then apply these estimates to
X;_1.The dashed line in Figure 5.1 shows the resulting forecast MSE. The
minimum is still the same as in the fixed-X case: the objectively correct
prior minimizes the forecast MSE. However, the deterioration in forecast
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performance with an excessively dispersed prior is much worse in this
case. OLS forecasts would produce extremely inaccurate predictions.

Intuitively, the reason is that when the number of covariates, J, is close
in magnitude to the number of observations, N, many columns of X
will end up, by chance, highly positively or negatively correlated, even
though their elements are IID.> OLS tends to assign very large coeffi-
cient magnitudes to such highly correlated pairs of covariates that are
largely offsetting each other in the OLS fitted value. The OLS objective
function is almost flat regarding these coefficients. Small coefficient mag-
nitudes or large coefficients that make the covariates mostly cancel each
other in the OLS fitted value produce almost the same fit. If the covariate
matrix X remains fixed, they also largely offset in the forecast based on
the OLS estimates. OLS having difficulty pinning down the magnitudes
of these coefficients therefore does little harm. However, if the covariate
matrix changes stochastically, it is likely that a pair of covariates that was,
just by chance, highly correlated in X;_, is no longer highly correlated
in X;_1. As a consequence, the huge OLS coefficient estimates obtained
from regressing on X;_» no longer have offsetting effects in the forecast
that applies these estimates to X;_1. This contaminates the forecast with
a huge estimation error and results in poor forecast performance.

With an informative prior close to the objectively correct prior this
problem is ameliorated because, as we mentioned above, shrinkage is
particularly strong along principal components of I\lIX’X with small eigen-
values. Small eigenvalues exist if some characteristics are approximately
spanned by other characteristics. The posterior mean then strongly down-
weights contributions to the forecast that come from covariates that have
close to offsetting effects in the OLS estimates.

That X is drawn independently every period may be too extreme as
a representation of stochastically changing firm characteristics, but an
autoregressive process with a certain degree of persistence may be realis-
tic. For the rest of this chapter, we stick to the case of fixed X. But it is
useful to keep in mind that a stochastic X would make investors’ forecast-
ing problem more difficult and would further enhance the importance of
informative prior beliefs.

5.3 RETURN PREDICTABILITY

We now examine the properties of returns when investors price assets
based on the posterior in (5.23) that results from objectively correct,

2In other words, %X/X will have a substantial number of small eigenvalues. Asymptot-
ically, if N — oo and J/N converges to a fixed constant, the distribution of eigenvalues of
%X/X follows the Marchenko-Pastur distribution.
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informative prior beliefs. Compared to returns under OLS learning in
(5.15), there is now an additional term in the expression for returns:

i1 =X —T)g— XT (X' X) "' X', + €141 (5.25)

The first term on the right-hand side of (5.25) appeared because of
the shrinkage induced by the informative prior. With diffuse prior, and
hence OLS learning, we would have I'; =1I; and the term would disap-
pear. But with informative prior it is nonzero. We can interpret this term
as the effect of “underreaction,” due to shrinkage, to the fundamental
information in X.

As in the OLS learning case, the second term represents the effect of
noise on investors’ posterior mean. The purpose of shrinkage induced
by the informative prior is to dampen the effects of this noise-induced
estimation error. Shrinkage via T'; dampens this component, but at the
cost of generating the first term. Under Bayesian learning, I'; optimally
trades off the pricing error arising from these two components.

5.3.1 In-Sample Return Predictability

When an econometrician samples returns from this economy and
regresses the returns in (5.25) on X, then the expression for the regres-
sion coefficients, as the one for returns in (5.25), now has an additional

term compared with the OLS learning case:?
b1 = (X/X)_1 X741
=(I;—THg—T; (X'X) ' X&+(X'X) "' X'ep1. (5.26)

The first term on the right-hand side is a consequence of the first term in
the return expression (5.25). Shrinkage induced by the informative prior
leaves this component in returns that is correlated with the columns of X.
Consequently, it gets picked up in the regression of returns on X.

Now let’s revisit the in-sample portfolio strategy with weights w, =
%Xht+1, using b;, 1 from (5.26). In this case, results in Martin and Nagel
(2019) show that the expected value of the portfolio return 75,41 =

30ne could also let the econometrician use shrinkage methods like ridge regression, effec-
tively imposing a prior that the coefficients in the return predictability regression cannot be
too big. If the econometrician’s prior distribution of the coefficients is roughly in line with
the true distribution of the coefficients, using such methods would strengthen the in-sample
return predictability, but it would not qualitatively change the results.
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w;rH_l = h;—i—l (X/X)ht+1 is

1
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1 _ -1 _ -1
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]
1 Aj )
=3 L +1). (5.27)
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When 6 — oo, this expression converges to the expected return we
obtained in the OLS learning case in (5.19).

To interpret the magnitudes, it is useful to note that since 775,11 =
%h; +1X'Xb, 1, the expected return E 75,11 also represents the expected
total explained return variance in the in-sample predictive regression,
while 1 — J/N is the variance of the residual. We can therefore construct
an adjusted R? measure from the return prediction regression,

Eris:+1 ) N
RE, =1—-(1- > ) 5.28
adi ( 1=J/N+Ersimi) N=J (5:28)

In the rational expectations case E 75,41 =J/N, as we showed in (5.11),
and hence this adjusted R? is exactly zero. With learning, however, there
are in-sample predictable components in returns that raise sz Ji above
zero.

Figure 5.2 illustrates this with a numerical example. As before, N=
1000 and we draw IID elements of X from a standard normal distribution.
The vector g is drawn from the prior distribution (5.21) with 6 =1. As
Martin and Nagel (2019) discuss, with 6 =1, the share of predictable
variation in cash flow growth is roughly of the same magnitude as the
share of long-term earnings growth rates over a 10-year horizon that are
forecastable with analyst forecasts according to the evidence in Chan,
Karceski, and Lakonishok (2003). If we interpret one period in the model
as a 10-year time window, we get an empirically realistic cross-section
of cash flow growth rates. We set #=1, which means that investors have
learned from one period of cash flow growth observations.

The solid line in Figure 5.2 shows the adjusted R? for different values of
J. When ] is not small relative to N, the adjusted R? is substantially above
zero. For example, with ] =900, the adjusted R? is above 25%. In other
words, an econometrician running this regression would find substantial
in-sample return predictability even though investors in this economy do
not demand any risk premia and they do not have behavioral biases in
their belief formation.
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Figure 5.2. Adjusted RZ in in-sample return prediction regression

The dashed line shows that in-sample return predictability would be
even stronger under OLS learning. By imposing shrinkage based on an
objectively correct prior, investors can avoid excessive contamination of
asset prices and returns with estimation error from their learning about
g. Doing so minimizes the amount of in-sample return predictability, but
it cannot eliminate it.

Martin and Nagel (2019) further look at the properties of formal sta-
tistical tests of return predictability. Under the hypothesis of rational
expectations—the null hypothesis in a large number of empirical studies
of the cross-section of stock returns—returns are 7,11 =e;.1 and hence
unpredictable. This in turn implies the null hypothesis that the true val-
ues of the regression coefficients b, 1 in (5.26) are zero. To analyze the
properties of tests of this null, Martin and Nagel apply high-dimensional
asymptotics where N — co and ] — oo at the same time, with J/N con-
verging to a fixed constant. This type of asymptotic analysis delivers a
closed-form solution for the asymptotic distribution of test statistics, but
unlike conventional fixed-], large-N asymptotics, it ensures that | does
not vanish in magnitude relative to N so that investors’ learning prob-
lem remains relevant. This is important because the asymptotic results
are meant to approximate the properties of statistical tests in a finite-
sample case where the number of covariates is not small relative to N and
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investors therefore remain uncertain about the parameter vector g. Mar-
tin and Nagel show that a test of the rational expectations null hypothesis
rejects with probability 1 in the asymptotic limit. Furthermore, this result
holds for any fixed ¢, i.e., even if investors have learned about g from data
spanning many periods.

Overall, an econometrician studying the returns in a large-J/N econ-
omy is likely to come away with the conclusion that returns are pre-
dictable by the firm characteristics in X. The typical conclusion from
empirical rejections of the no-predictability null in in-sample tests is that
models of risk premia or mispricing due to imperfectly rational investors
are needed to explain the evidence. But the analysis here shows that
when ] is not small relative to N, in-sample predictability tests lose their
usual economic meaning because there is a third possibility: in-sample
return predictability arises because investors’ forecasting problem is high-
dimensional. Investors’ estimation errors contaminate returns and they
look, ex post, predictable.

5.3.2 (Absence of) Out-of-Sample Return Predictability

The analysis in this chapter has so far focused on in-sample predictability
tests. In these tests, the fit of the return prediction regression is evaluated
on the same sample of returns that was used to estimate the coefficients in
this regression. Investors making decisions in real time, without the benefit
of hindsight, would not be able to exploit the predictability captured in
these regressions. The econometrician looking at an in-sample regression
estimated ex post therefore uses information that investors did not have
when they priced assets.

To put the econometrician on the same footing with investors, we now
look at out-of-sample (OOS) predictability. We consider the returns on
a portfolio ro0s+1 = w/OOS,trH'l’ where the weights applied to 7+ 1

returns are based on regression coefficients estimated from time # returns:
1
woos,: = ﬁXht (529)

This is a portfolio strategy that would be implementable in real time.
Martin and Nagel (2019) show that Erpos+1 =0. Thus, even in the
high-dimensional case where investors have to learn about the predictive
role of a large number of firm characteristics, there is no OOS return
predictability. This is an intuitive result. Since investors are Bayesian, they
use available information optimally. Moreover, we endowed them with
an objectively correct prior. Once we put the econometrician on the same
footing as investors by preventing use of look-ahead information that
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investors do not have, the econometrician can no longer predict investors’
forecast errors and asset returns.

Therefore, researchers interested in empirically isolating risk premia or
behavioral biases of investors should focus on OOS predictability, not
in-sample predictability. In a low-dimensional setting, with | small, this
would not be a big issue. But in a high-dimensional setting there is a big
wedge between in-sample predictability, which picks up learning-induced
investor forecast errors, and out-of-sample predictability.

The OOS tests do not need to be true OOS tests (like those, for example,
in McLean and Pontiff (2016)) where the researcher has to wait, after
formulating a hypothesis, until a sufficient amount of new, yet-unstudied
data has been produced. The result that Erops,4+1 =0 also applies to
pseudo-OOS tests where the econometrician obtains return data ex post
but makes sure that the regression coefficients used to weight ¢ + 1 returns
are estimated only with data that was available at time . The result that
E700s,.+1 =0 applies to such a pseudo-OOS strategy, too. Of course,
this assumes that there are no other complications present that are not
captured in the model and that could invalidate the pseudo-OOS test.
For example, if a researcher today can go back in time and construct
variables in historical data that were not available to investors at the time
when they priced assets, then the prediction E 700541 =0 does not hold
for pseudo-OOS trading strategies based on such variables.

Martin and Nagel (2019) further show that the pseudo-OOS test could
also be performed backward in time where the weights in (5.29) that
use regression coefficients estimated from returns at time # (or later) are
applied to returns at #—1, i.e., w/OOS,trt_l' This backward OOS port-

folio return, too, has expected return of zero in this model. This is not
a tradable strategy, but potentially interesting for econometric practice
as it supports an alternative route for pseudo-OOS return predictability
tests. The fact that many cross-sectional asset pricing anomalies do not
hold up in backward OOS tests (Linnainmaa and Roberts 2018) could
therefore indicate that these anomalies are not due to risk premia or
behavioral biases, but rather the consequence of investor learning in a
high-dimensional environment.

The absence of backward OOS predictability is also interesting because
it provides support for cross-validation methods we discussed in ear-
lier chapters. When data is partitioned into estimation and validation
samples, some validation blocks will temporally precede some of the esti-
mation blocks. Therefore, if a researcher wants to train an ML algorithm
to predict cross-sectional differences in asset returns due to risk premia
or OOS exploitable mispricing, but does not want the algorithm (e.g.,
during hyperparameter optimization) to pick up in-sample predictabil-
ity induced by investor learning, then for cross-validation to work, it
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must be true that learning does not introduce backward OOS return
predictability.

Martin and Nagel (2019) add a note of caution, though. The absence
of forward-OOS return predictability is a natural, and likely a general
property of Bayesian learning (with objectively correct prior), but the
backward result might be somewhat specific to the environment in this
model. It is still an open question how general the absence of backward
OOS predictability result is.

5.4 EXTENSIONS

The basic modeling framework can be extended in a number of interesting
directions that may bring further realism to the model. This section briefly
reviews two of these directions: sparsity in investors’ cash flow forecasts
and extra shrinkage or sparsity. Both of these can be understood as modi-
fications of the prior beliefs that investors approach the learning problem
with.

5.4.1 Sparsity

The stochastic environment we have assumed so far leads investors to
apply shrinkage in their cash flow forecasting regressions, but they do
not impose sparsity. But it may be plausible that investors also use sparsity
to discipline their forecasting models in a high-dimensional environment.
By changing distributional assumptions, we can obtain a sparse solution
in investors’ learning problem that still remains close to, but not exactly
equal, to the Bayesian posterior mean. We need that, (i) investors’ prior is
that the elements g; of g are drawn from a Laplace distribution,

1 ;]
f(g)= 75 &P (_T )
where 2b% = 9 is the variance; and (ii) investors price assets based on the

mode rather than the mean of the posterior distribution (i.e., based on a
MAP estimator). In this case, investors’ forecasts can be represented as
the fitted values from a Lasso regression (Tibshirani 1996).

That investors use the posterior mode in pricing is a deviation from the
fully Bayesian framework. As a consequence, the result that the expected
OOS portfolio return in (5.29) is zero no longer holds exactly. In sim-
ulations, Martin and Nagel (2019) show that the deviations are small,
and overall, the return predictability looks very similar to the shrinkage
without sparsity case.
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5.4.2 Extra Shrinkage or Sparsity

In the Bayesian framework we used in this chapter so far, shrinkage (or
sparsity) in investors’ cash flow forecasting model is purely a consequence
of investors’ informative prior beliefs. Given these prior beliefs, it is sta-
tistically optimal to regularize the forecasting model. Moreover, the prior
was objectively correct so that the extent of shrinkage was not only opti-
mal given investors’ subjective beliefs about the cash flow process, but it
was also optimal in light of the actual process.

Statistical optimality considerations are not necessarily the only reason
why investors may force shrinkage or sparsity on their forecasting models.
One simple economic reason for sparsity can be that variables are costly
to observe. In this case, investors face a trade-off between the forecasting
benefits of this variable and the cost of observing it. For costly-to-observe
variables, it may not be worth including them in the forecasting model
if the benefit does not exceed the cost. Relatedly, investors may perhaps
prefer sparse models with fewer predictor variables because of a desire
to keep the forecasting model simple and interpretable. One could micro-
found such a desire for simplicity as boundedly rational limited attention
as in Sims (2003), Gabaix (2014), and Molavi, Tahbaz-Salehi, and Vedolin
(2020). In these models, agents employ shrinkage and sparsity to minimize
the cost of attention.

We can introduce such additional motives for shrinkage and sparsity
in our framework by making investors’ prior beliefs concentrated more
tightly around zero than under the objectively correct prior (where the
prior distribution agrees with distribution that we draw g from in gener-
ating the data). In this case, the result that the OOS portfolio return in
(5.29) is zero no longer holds. Martin and Nagel (2019) show that the
OOS portfolio return is positive in this case. Intuitively, investors now
underweight the information in X about cash flow growth. As a conse-
quence, there is a component in returns that is predictable with X not only
in- but also out-of-sample.

Figure 5.3 illustrates this with simulated OOS portfolio returns. We
use the same parameter values as in Figure 5.2. The dotted line show the
expected OOS portfolio return in the case of an objectively correct prior.
Consistent with our arguments earlier, it is zero for all values of J. Recall
that that the covariance matrix of the objective prior is Xy = %I LIf 0 in
investors’ prior is replaced with 6/2, shown by the dashed line, or 6/4,
shown by the solid line, the OOS expected portfolio return is positive and
increasing in J. The excessively tight prior distribution induces excessive
shrinkage and OOS predictable components in returns. In a model with
Laplace prior and sparsity, the effects of excess shrinkage are very similar
to the ones shown in Figure 5.3.
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Figure 5.3. Expected OOS portfolio return when investors learn with
excessive shrinkage

Therefore, if a researcher empirically finds OOS return predictabil-
ity, one possible interpretation is that excessive shrinkage or sparsity in
investors’ cash flow forecasting models is the underlying cause. When the
number of potentially relevant predictors is large, the influence of the
prior beliefs on the posterior mean is strong and a relatively small amount
of tightening of the prior distribution relative to an objective prior can
produce substantial OOS return predictability.

5.5 IMPLICATIONS FOR EMPIRICAL RESEARCH

The analysis in this chapter has shown that the properties of the cross-
section of stock returns are sensitive to the dimensionality of the envi-
ronment in which investors price stocks. The basic assumption that
investors face a high-dimensional prediction problem when they fore-
cast firms’ cash flows is arguably realistic. In this environment, investors
end up making forecast errors that look predictable ex post in in-sample
regressions on cash flow relevant covariates. These forecast errors con-
taminate returns, making returns predictable as well. When investors
deal with this high dimensionality in a sophisticated way by employing
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Bayesian regression shrinkage rather than, say, simple OLS regression,
they minimize this return predictability, but they cannot eliminate it.

These results raise questions about the interpretation of empirical
research in cross-sectional asset pricing. Some empirical studies in this
area econometrically test asset pricing models. Others search for new fac-
tors or return predictors. The vast majority of this empirical work looks at
the data, implicitly or explicitly, through the lens of rational expectations
models in which investors are assumed to know the relevant parameters
of the processes generating asset fundamentals. Under this null hypoth-
esis, in-sample regressions run ex post on historical data consistently
estimate the return predictability that investors see ex ante. Hence, the
conclusion follows that such in-sample return predictability must reflect
either risk premia or systematic mistakes investors make when pricing
assets. The results reviewed in this chapter cast doubt on this interpre-
tation. When investors face a high-dimensional environment, in-sample
return predictability evidence loses the economic content it has in a ratio-
nal expectations setting. While the rational expectations model may be
a good approximation when investors’ environment is low-dimensional
and hence learning only has small effects on asset prices, it is no longer a
good approximation in the high-dimensional case. In-sample predictabil-
ity can be the consequence of investors not having precise knowledge of
the parameters of a data-generating process that involves large numbers
of potentially relevant predictor variables.

Put differently, the economic content of the (semi-strong) market effi-
ciency notion that prices “fully reflect” all public information (Fama 1970)
is not clear in a high-dimensional setting. Researchers usually emphasize
the “joint hypothesis problem” as the main difficulty in interpreting mar-
ket efficiency tests: the econometrician studying asset prices does not know
the model that determines risk premia required by risk-averse investors.
But even leaving aside this problem, the interpretation of the market effi-
ciency notion is not clear. Does “fully reflect” mean that investors know the
parameters of the cash flow prediction model or, alternatively, that investors
employ Bayesian updating when they learn about these parameters? The
analysis in this chapter shows that there is a big wedge between these two
interpretations. The former, adopted in much of the empirical literature,
can be tested with in-sample return predictability regressions. In a setting in
which investors face a high-dimensional environment, this does not seem
like an economically interesting hypothesis. Its rejection does not warrant
the conclusion that risk premia must be presented or that investors must
be subject to behavioral biases that induce mispricing.

This suggests an alternative interpretation of the “factor zoo” in the
cross-section of stock returns (Cochrane 2011; Harvey, Liu, and Zhu
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2016). Much of the evidence in this literature is based on in-sample
predictability tests. Empirical discoveries of new cross-sectional return
predictors in such in-sample tests are less interesting once we recognize
that investors have to digest the predictive information of a large number
of forecasting variables. A world in which researchers have at their dis-
posal such a large array of candidate return predictors is also one in which
investors have to consider many of the same variables as candidate predic-
tors of cash flows. In this world, in-sample return predictability evidence
does not tell us much about the expected returns that investors perceived
ex ante at the time they priced assets.

To differentiate between learning-induced predictability on one hand
and risk premia and mispricing on the other, we need evidence from
OOS tests. True OOS tests are often not feasible and researchers will
have to rely on pseudo-OOS tests, emulating real-time forecasting ex
post on historical data. From the perspective of the model in this chap-
ter, pseudo-OOS tests are just as good as true QOS tests.* Alternative
evidence that supports the economic underpinnings of a risk premium
or behavioral bias theory from perspectives other than return prediction
regressions, e.g., with data on macroeconomic risk exposures or investor
expectations, can also be helpful in making the case that an in-sample
predictable component of returns is not an artifact of investors’ learning
process. In a high-dimensional environment, such alternative perspectives
are particularly valuable.

Some papers in the “factor zoo” literature already report pseudo-OOS
return predictability results. One example is the last part of the previous
chapter where we discussed OOS predictability. The evidence indicates
that OOS returns are not zero. But there is a substantial decay in return
predictability from in- to out-of-sample. Efforts to build models of risk
premia or of systematic, persistent investor biases should focus on such
OOS robust cross-sectional return predictability patterns.

Looking at the world through the lens of rational expectations mod-
els, empirical researchers are often skeptical of OOS testing. Under the
rational expectations hypothesis, where investors do not face a learning
problem, in- and out-of-sample return predictability tests examine the
same hypothesis. And in-sample tests are more powerful because they use
the available data to the fullest extent. Therefore, it is not clear why one
would want to focus on OOS tests (Inoue and Kilian 2005; Campbell and
Thompson 2008; Cochrane 2008, Hansen and Timmermann 2015). But

40f course, only if done without p-hacking, multiple testing, and data mining (Lo and
MacKinlay 1990; Harvey, Liu, and Zhu 2016; Chordia, Goyal, and Saretto 2019). Pseudo-
OOS return predictability tests can be subject to these distortions just like in-sample tests.
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viewed from the perspective of learning models, the situation is different.
If investors face a high-dimensional learning problem, in- and out-of-
sample tests examine fundamentally different hypotheses. Learning can
generate in-sample predictability, but not OOS predictability. OOS tests
therefore have a clear economic motivation.

Finally, the results in this chapter also provide a perspective on how
technological progress in data construction and data analysis could affect
the return predictability observed in empirical research. Many cross-
sectional stock return studies use historical data from time periods in
which investors had less data available at their fingertips and much more
constrained data processing capabilities than researchers have today.
Researchers can easily construct variables today (say, through automated
textual analysis of corporate filings) that were basically inaccessible to
investors several decades ago even though the data may have existed in
principle (e.g., in the form of hardcopy annual reports). Through the
lens of the model in this chapter, we can interpret this lack of data
access as forcing investors to employ excessively sparse valuation models
when they priced assets. Following the logic of the analysis in Section
5.4.2, it is therefore likely that when researchers use current methods
and technology to construct predictor variables in earlier historical time
periods, these variables predict returns not only in in-sample, but also
in pseudo-OOS tests. For variables that may not have been available
to investors when they priced assets, researchers should be cautious in
attributing the return predictability to risk premia or behavioral biases of
investors.

5.6 CoONCLUDING REMARKS

This chapter has shown how the presence of a high-dimensional learn-
ing problem in investors’ cash flow forecasting has important effects on
the statistical properties of asset prices. As the availability of data that is
potentially relevant for investors’ cash flow forecasting keeps expanding,
these learning-induced pricing effects are likely to grow in importance.

We developed these ideas within a cross-sectional asset pricing frame-
work, but they are likely much more broadly relevant. Similar issues arise
in any setting in which economic agents learn to make forecasts and face
a potentially large number of relevant predictors. The statistical proper-
ties of forecast errors will be sensitive to the dimensionality of investors’
learning problem. Forecast error predictability that seems anomalous rel-
ative to a rational expectations benchmark could be a consequence of
learning in a high-dimensional environment.
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The next chapter outlines directions that research on investor learn-
ing in complex environments could take in the future. This discussion
includes some thoughts on how the ideas in this chapter could be applied
in other economic settings. The next chapter also offers suggestions
for extending the analysis of learning effects beyond the simple linear
Bayesian regression framework toward a model in which economic agents
deal with more challenging ML problems in their forecasting and decision
making.



Chapter 6

A RESEARCH AGENDA

TaE NUMBER OF ML applications in asset pricing is growing rapidly. This
parallels similar growth in many other areas of economics where ML
methods are quickly becoming part of the standard toolkit, such as, for
example, in causal inference (Athey and Imbens 2019) and for textual
analysis (Gentzkow, Kelly, and Taddy 2019). ML methods hold promise
for advancing our understanding of asset prices. Empirically, they per-
mit the study of the relationships between asset prices and a rich set of
information without forcing artificial and ad hoc sparsity on the empirical
models. In theoretical studies, ML tools can provide inspiration for mod-
eling of economic decision making in settings with complex sources of
uncertainty without imposing unrealistic simplicity on the environment.

Chapters 4 and 5 provided two examples of empirical and theoretical
applications of ML approaches. These analyses, and other related recent
studies, have produced some novel insights about the properties of asset
prices. Embracing the high dimensionality of the prediction environment
faced by investors leads to a richer empirical description of the invest-
ment opportunity set. It also helps, theoretically, to better understand how
assets are priced in financial markets.

But many questions remain unanswered. To a large extent, the literature
in this area is still in an early exploratory phase. Different papers apply
different methods to similar problems, but there is no consensus yet on the
most suitable ML methods for particular sets of problems in asset pricing.
A central theme of this book is that off-the-shelf application of ML tools,
without injecting some degree of economic reasoning, is unlikely to work
well. Asset price data have specific properties that call for an ML approach
that is tailored to these conditions. A lot of work remains to be done to
integrate ML methods more firmly with asset pricing theory and existing
empirical methods.

In this chapter, I discuss some of these research opportunities. This
sketch of a research agenda is by no means a complete survey of open
questions in this area, but I hope that it can serve as useful inspiration
for future research. As in much of this book, I focus mostly on the cross-
section of stock returns in my discussion of these research opportunities,
but there are, of course, related potential applications in other areas of
asset pricing as well.
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I begin with empirical applications of ML tools. Part of the challenge in
empirical work is to sort out how to select and tweak ML methods to be
most useful in asset pricing applications. Some progress has been made,
but many questions remain about economically appropriate methods of
regularization, the role of nonlinearities, and how to deal with structural
change in the underlying data-generating process.

While most of the recent ML applications in asset pricing have focused
on return prediction or closely related tasks, ML methods could be use-
ful for other purposes, too. I discuss two areas where application of
ML methods seems promising. Both broadly fall into the area of asset
demand analysis. One is the empirical estimation of asset demand systems
from detailed investor portfolio holdings data; the other is the analysis of
investor expectations data.

Finally, I offer some suggestions on how asset pricing theory could
advance by adopting ML as a model of investor belief formation in
high-dimensional environments. This discussion builds on the analysis in
Chapter 5, which raised questions about how to conduct and interpret
empirical work on return predictability. But the insights researchers have
obtained so far may just be the tip of the iceberg. There are many direc-
tions in which one could take this approach further. There is more to be
discovered about asset pricing from exposing investors within theoretical
models to a realistically complex, high-dimensional environment in which
learning is difficult.

6.1 CHARACTERIZING INVESTMENT OPPORTUNITIES

Return predictability analyses, factor model estimation, and construction
of empirical SDFs all help to characterize the investment opportunities
available in financial markets. Given the richness of the information that
is available to researchers for constructing predictors of returns and risks,
this is a natural area for application of ML methods. Early work in this
area has often taken tools off the shelf from elsewhere in the ML litera-
ture. Much work remains to be done to adapt ML tools for the specific
conditions in asset pricing.

6.1.1 Economic Restrictions for ML

Given the low signal-to-noise ratio in asset price data, prior knowledge
of the researcher plays a more important role than in other ML appli-
cations. An extremely flexible, purely data-driven approach is unlikely
to work well. For this reason, it is important to fuse ML methods with
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economic restrictions that provide some a priori structure to guide the
choice of ML algorithm, the method of regularization, and other aspects
of the approach.

Chapter 4 illustrated how this can be done in a Bayesian regression
setting. The Bayesian setting made it relatively straightforward to con-
nect the estimation approach with economic restrictions. In this case,
economically motivated restrictions like the absence of near-arbitrage
opportunities and concentration of factor premia in major sources of
return covariance can be imposed through the prior beliefs about SDF
parameters.

This approach, however, completely abstracted from frictions. This
potentially misses useful prior information about assets and portfolios
that are most likely to exhibit big magnitudes of expected excess returns
and Sharpe ratios. Short-sale constraints and other limits to “arbitrage”
could cause such premia to be concentrated among assets where these
frictions are particularly strong. Therefore, extending the prior beliefs
specification to allow for friction-induced patterns in expected returns
could potentially lead to further improvement in out-of-sample predic-
tive power. For this purpose, one would need to relate the prior variance
of expected asset returns to asset characteristics that predict the presence
of frictions. This would reduce the degree of shrinkage that is applied to
expected return estimates for assets that are likely affected by frictions.

It would also be interesting to build stronger bridges between structural
economic models of asset prices (i.e., asset pricing models with explicit
assumptions about investor beliefs and preferences) and ML approaches.
With the Bayesian regression framework, this again should not be too
complicated. One could tilt prior beliefs about expected returns or SDF
parameters toward the predictions implied by structural asset pricing
models. This would be somewhat similar in spirit to the approach in Pas-
tor and Stambaugh (2000), but in a high-dimensional setting and with
structural rather than reduced-form asset pricing models. An analysis
along these lines would allow researchers to investigate whether imper-
fect, partially misspecified models could nevertheless have some value in
describing the investment opportunity set.

A Bayesian regression approach makes it relatively easy to inject
economic restrictions through prior beliefs. But there are many other
interesting ML approaches that do not fit into the Bayesian regres-
sion framework. An important task for future research is to investigate
whether one can combine economic reasoning with other ML methods,
too. Bryzgalova, Pelger, and Zhu (2019) take some steps toward this goal
for tree-based methods. They prune and shrink trees based on a penalized
mean-variance optimization problem that is closely related to the criterion
that we discussed in Chapter 4 within the Bayesian regression approach.
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Can one find a similar connection to economic optimization criteria in
neural network methods? Is it possible to give an economic interpreta-
tion of ensemble methods such as bagging and boosting? Answers to
these questions would be a big step forward toward tightly integrating
ML methods into the empirical asset pricing toolkit.

6.1.2 Nonlinearities

At several points in this book, I have conjectured that nonlinearities may
play a less prominent role in asset pricing applications than in many
typical ML applications outside of finance. This is not to say, however,
that nonlinearities can be neglected. First, the focus of this book is on
equity markets and on prediction problems that involve first moments of
equity returns. Nonlinearities may play a bigger role in in other areas
of asset pricing. For example, in default risk modeling, nonlinearities
are more prominent than in stock returns. This may give an edge to
ML methods that are particularly well suited for accommodating these
nonlinearities. Second, even in equity market research, certain types of
nonlinearities seem relevant. Based on the evidence that the ML literature
on the cross-section of stock returns has accumulated so far, first-order
interactions between firm characteristics appear to be the quantitatively
most important type of nonlinearity.

An interesting question that remains to be answered in this regard
is whether nonlinear methods like neural networks and tree-based
approaches actually have a clear advantage over linear penalized regres-
sion models (e.g., elastic net) that include covariate interactions. For
example, the elastic net that Gu, Kelly, and Xiu (2020a) compare with
neural networks does not include covariate interactions. It is clear that
nonlinear methods outperform linear methods without interaction, but
it is still an open question whether an elastic net approach that includes
covariate interactions can perform as well as a neural net or tree-based
approach in asset pricing applications. Sorting out this question would be
a big help toward a better understanding of which of the many available
ML methods are best suited for asset pricing applications.

Interpretability is a concern with nonlinear models. To give an eco-
nomic interpretation of the predictive success of a model, we need to be
able to assess how different covariates contribute to the predictions of the
model. One can look at the gradient, but this provides only a local assess-
ment of covariate influence around a particular value of the covariate
vector. Recent research has made some progress on developing summary
measures of the global influence of a variable. For example, Horel and
Giesecke (2019) propose a statistic that is a weighted average of squared
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partial derivatives of a neural network estimator and that allows statis-
tical significance testing. These issues are also relevant for asset pricing
applications of nonlinear models. Along the lines of our discussion in
Section 3.2, for economic interpretation it would be particularly useful
to develop metrics that reveal how covariates contribute to the squared
Sharpe ratio of a portfolio, or the variance of an SDEF, constructed based
on the predictions of the estimated network.

6.1.3  Structural Change

Perhaps the most important empirical challenge is to adapt ML methods
for structural change in asset markets. Asset return moments change over
time as the structure of the economy changes, investors learn from expe-
rienced history, the mix of market participants changes, and technology
advances. Most ML methods are not designed for settings undergo-
ing such continuous structural change. Accordingly, the existing ML
papers in cross-sectional asset pricing have so far taken an approach that
mostly neglects this structural change. As in standard rational expecta-
tions econometrics, they proceed, implicitly, under the assumption that
there is an underlying stable law of motion generating returns that an
econometrician can recover by sampling asset return data over relatively
long periods.

As Chapter 5 made clear, this is a particularly unpalatable assumption
in a high-dimensional environment. If a large number of covariates are
available to an econometrician as potential return predictors, this also
means that investors have to digest the predictive information from a
large number of covariates. Learning these predictive relationships from
observed data is subject to parameter uncertainty. As a consequence, real-
ized asset returns may be contaminated with substantial estimation errors
that were not predictable in real time to investors, but that may look pre-
dictable ex post to the econometrician in in-sample regressions. Moreover,
to the extent that some variables truly predict returns in an out-of-sample
sense—perhaps because learning is slower and more imperfect than in the
frictionless Bayesian model of Chapter 5—this predictive relationship is
likely to change over time. There may be a dynamic process of anomaly
discovery and elimination by arbitrageurs.

In this sense, the advancement of ML-inspired methods in asset pric-
ing has brought to the surface a tension that needs to be resolved. On
one hand, empirical asset pricing research has pushed methods toward
more realism by taking into account large numbers of predictors with-
out imposing ad hoc sparsity on prediction models. On the other hand,
once we recognize the high dimensionality of the environment investors
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operate in, the implicit assumption that the predictive role of these pre-
dictors for asset returns was stable over decades looks untenable. In
rudimentary ways, this has already been addressed to some extent in many
recent papers. The use of hold-out samples for pseudo-OOS tests and, in
some cases, rolling estimation approaches, is basically an acknowledge-
ment that predictive relationships may not be stable over time. Yet, there
is so far no systematic treatment of the structural change issue in asset
pricing ML studies.

Structural change complicates the application of ML approaches in sev-
eral ways. In Section 3.8, we briefly discussed two of these complications.
One is that structural change implies that not only parameters of the
prediction model may change over time, but hyperparameters—for exam-
ple, penalty parameters in ridge regression or lasso—may change, too.
Another one is that standard cross-validation methods for model valida-
tion and hyperparameter estimation that are indifferent to time ordering
of observations lack justification when structural change is present. Draw-
ing validation data from time periods that precede all or part of the
training data is fine in a stationary setting, but may not be appropriate
when there is structural change in the predictive relationships.

There are several directions in which future research could progress on
this question. First, computational considerations loom large. Repeatedly
retraining computationally demanding learners over largely overlapping
rolling data sets is inefficient and may be prohibitively expensive for
some ML methods. Finding computationally efficient updating schemes
could help overcome this obstacle. In Section 3.8 we discussed that
this is straightforward for ridge regression where the estimator can be
expressed in a recursively updated form. For other methods, it is not
as simple, but the literature offers some suggestions, too. For example,
Angelosante and Giannakis (2009) and Monti, Anagnostopoulos, and
Montana (2018) suggest recursive approaches for lasso. Martinez-Rego,
Pérez-Sanchez, Fontenla-Romero, and Alonso-Betanzos (2011) propose
an updating scheme for neural networks that allows for gradual for-
getting of earlier data. Whether any of these approaches, perhaps with
some modifications, could work well in asset pricing applications is
not clear at this point, but it seems like an interesting direction to
explore.

Second, as we did in Chapter 4 in a stationary setting, it seems impor-
tant to develop a framework that allows us to link statistical approaches
for handling structural change with economic principles. While computa-
tional efficiency considerations may dictate the choice of updating scheme
in some applications, it would nevertheless be useful to understand what
an updating scheme should look like, ideally, given some prior beliefs
about the underlying economic model of asset prices and the reasons
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for structural change. For example, if the underlying economic model is
one in which investors are learning from historical data about predic-
tive relationships—e.g., as in Chapter 5 but perhaps with slower learning
speed so that some OOS return predictability exists—this type of model
may prescribe a particular form of parameter updating.

Third, once the appropriate tools for tracking structural change are in
place, the ultimate goal is to use these tools to characterize the dynamics
of OOS predictable asset returns. As Chapter 5§ made clear, in a high-
dimensional environment, the economic insights that can be obtained
from in-sample return prediction regressions are rather limited. Returns
are contaminated with learning-induced forecast errors that look pre-
dictable ex post in in-sample regressions. To isolate risk premia or the
pricing consequences of behavioral biases of investors, we need to study
OOS predictable returns.

The notion that there is structural change in the investment opportu-
nity set and that anomalies apparent in historical data may not persist into
the future is not a new idea. McLean and Pontiff (2016) is a prominent
example of a recent paper that tries to quantify these changes. But econo-
metric practice in empirical asset pricing mostly does not embrace this
notion. For example, empirical work that looks for priced systematic risk
typically does so with in-sample analyses. Similarly, tests of behavioral
finance models typically use in-sample analyses. While some OOS analysis
with hold-out samples may be present in some papers, dynamic learning
processes and structural change are not front and center in much of the
literature. Adapting ML methods to account for structural change would
help to move away from this static perspective toward a more dynamic,
continuously changing characterization of the investment opportunity set
that is arguably a more realistic representation of how investors see the
world in real time.

6.2 ASSET DEMAND ANALYSIS

ML methods are useful not only for analyzing asset price data—that is,
market equilibrium outcomes—but also for understanding the underlying
drivers of asset demand. I focus my discussion of research opportunities in
this area on two complementary approaches that rely on different types
of data. One looks at asset demand in a rather direct way by examin-
ing investor holdings data in a demand system estimation framework.
The other is more indirectly connected to asset demand and looks at
expectations of investors—or, as proxies, the forecasts of analysts and
professional forecasters—that may be an underlying determinant of asset
demand.
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6.2.1 Demand System Estimation

Koijen and Yogo (2019) have introduced an asset demand system esti-
mation approach to asset pricing. Similar to product demand estimation
in industrial organization research, asset demand in this framework has
two components. One part is a function of observable asset character-
istics (such as market equity, book equity, profitability, and many other
characteristics commonly used in empirical asset pricing). The remainder
is latent demand that is due to asset characteristics that are unobservable
to the econometrician. The demand system can be estimated from portfo-
lio holdings data for different groups of investors present in the market.
The estimated system provides price elasticities of asset demand that can
then be used, in conjunction with a market clearing condition, to con-
duct counterfactual exercises, such as, for example, to assess the effects
on asset prices of a shock to asset supply.

This approach to asset pricing comes with several empirical challenges
that ML methods can help address. First, the set of characteristics that are
potentially relevant for asset demand is likely extremely large. Koijen and
Yogo (2019) use a small number of characteristics and this leaves much
of asset demand attributed to latent demand. It would be interesting to
know whether this result changes when a much larger set of characteris-
tics is considered with methods that are well suited for high-dimensional
estimation problems. As we discussed in Chapter 4, a large number of
characteristics are relevant for predicting cross-sectional differences in
stock returns. Within the asset demand system model, the characteristics
that explain variation in expected returns in equilibrium must be charac-
teristics that determine investors’ expectations of asset payoffs, or their
perceptions of risk, and hence their asset demands.

Second, there is a large degree of heterogeneity in the characteristics
that are relevant for different investors. A subset of characteristics that
matters for one group of investors may be ignored by other groups.
In other words, there may be substantial sparsity in investor-level asset
demand functions. ML methods may therefore be useful to allow for such
sparsity and to deal with it in a computationally efficient way.

Third, just as for asset return prediction, structural change is likely
important. It seems unrealistic that investors’ asset demand functions
could stay stable over long periods of time. Therefore, adapting ML meth-
ods to handle structural change is likely to be useful for asset demand
system estimation as well.

Similar types of challenges arise in consumer product demand system
estimation. Accordingly, the literature there has started to adopt ML tools
to address these challenges. Athey and Imbens (2019) and Gillen, Mon-
tero, Moon, and Shum (2019) discuss approaches that can handle the



6.2. ASSET DEMAND ANALYSIS 127

high dimensionality and sparsity of these settings. These methods may
potentially be applicable in asset demand estimation, too.

6.2.2 Expectations Formation

Beliefs about asset returns are a potentially important determinant of asset
demand and, ultimately, of equilibrium asset prices. Studying the proper-
ties of market participants’ forecasts of asset returns—or of variables like
earnings, GDP growth, and inflation that should be related to asset return
expectations—can help shed light on the belief formation process. For
many classes of investors, direct expectations data is not available. Empir-
ical studies therefore examine expectations of professional forecasters or
equity analysts as proxies for the unobservable investor expectations.

There is a huge literature on the properties of such forecasts. However,
the typical benchmark in this literature is a model of rational expecta-
tions in which forecasters know the parameters of the underlying model
generating the variables they are forecasting. Studies have used in-sample
forecast error predictability regressions to document various empirical
deviations from this benchmark, including over- or underreaction to
surprise information.

In-sample tests of forecast error predictability are, however, subject to
the same issues that we discussed in Chapter 5 for in-sample return pre-
dictability tests in high-dimensional settings. Recall that realized returns
in the model in Chapter 5 are simply the errors in investors’ forecasts
of future asset payoffs. The in-sample return predictability arising in this
model is really a manifestation of more general in-sample forecast error
predictability under Bayesian learning. Forecasters’ learning about the
data-generating process contaminates forecast errors with error compo-
nents that are in-sample predictable, although they are not predictable
OO0S.

There is therefore an opportunity to take a fresh look at the proper-
ties of expectations of investors, analysts, and macroeconomic forecasters
with a different approach. The approach should account for the high
dimensionality of forecasters’ environment and it should evaluate fore-
casts against OOS benchmarks that do not give a look-ahead advan-
tage to the econometrician the way in-sample tests do. Disentangling
learning-induced estimation errors from belief distortions due to bounded
rationality and behavioral biases is an important step toward a better
understanding of expectations formation in financial markets and the
macroeconomy.

The ML methods reviewed in this book provide the tools to accom-
plish this. They allow researchers to construct forecast benchmarks that
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take into account the predictive information in a large number of poten-
tially relevant covariates that are observable to forecasters. Combining
this large amount of predictive information in a regularized and, possi-
bly, sparse and nonlinear model, researchers can built a benchmark that
represents how a highly sophisticated forecaster would form expectations.

Just as in asset return prediction, structural change is an important issue
for forecast benchmarking, too. The relationship between observable
covariates and the variables to be forecasted is unlikely to be stable over
long periods of time. To be a good representation of how a skilled fore-
caster would build a forecasting model, an ML-based forecast benchmark
should account for such structural change. Rolling-window estimation is
a simple possibility, but, as we discussed earlier in this chapter, there may
be better approaches.

Bianchi, Ludvigson, and Ma (2020) is a recent example of research that
follows this path. They examine professional forecasts of macroeconomic
variables. Their forecast benchmark accommodates high dimensionality
through a dynamic factor model and regularization. The forecasts from
this benchmark are based only on information that is available to fore-
casters in real time with model training and validation conducted with a
rolling window approach.

6.3 THEORY APPLICATIONS OF ML

Empirical work in asset pricing has started to embrace the notion that pre-
diction problems are high-dimensional and that empirical methods should
be able to handle this high dimensionality. There are many promising
opportunities to do the same in theoretical modeling of financial mar-
kets. Chapter 5 showed that theory-implied properties of asset prices
are very different, and in some ways closer to empirical reality, when
investors’ high-dimensional learning problem is not assumed away. Much
more research remains to be done—in asset pricing, and in economics
more generally—on models in which economic agents confront a com-
plex reality with the tools of a statistician, and in which, like a real-world
statistician, they are left with considerable uncertainty about the laws of
motion governing the world.

The analysis in Chapter 5 stayed, on purpose, within a Bayesian fric-
tionless framework and thus very close to existing learning models in asset
pricing. We wanted to introduce high dimensionality into investors’ learn-
ing without at the same time also introducing any other costs, constraints,
and imperfections. But this is not to say that these complications are not
relevant. The frictionless Bayesian setting is a useful starting point, but it
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makes investors’ learning problem still, in many ways, too easy. In this
section, I discuss a few ideas about how to enrich such models so that
they better represent the complexity that investors face in the real world
and how they deal with it.

6.3.1 Bounded Rationality

Once we admit that investors operate in a complex environment in which
they have to keep track of a large number of predictor variables, it also
becomes hard to defend the assumption that there are no bounds to
rationality. Gathering large amounts of data may require costly search,
acquisition, and processing. Computational capacity may be limited. In
addition, decision makers may have a preference for tractable, simple,
and transparent models.

In Chapter 5 we took a small step in this direction when we explored
the consequences of excessive shrinkage or sparsity in investors’ forecast-
ing models. This can be thought of loosely as a consequence of a cost
of model complexity or a preference for simpler models. However, we
did not microfound this deviation from the frictionless Bayesian model.
A related example is the model in Molavi, Tahbaz-Salehi, and Vedolin
(2020). Theirs is a time-series setting in which investors use an excessively
sparse factor model to make forecasts and price assets.

Much work remains to be done to understand better how frictions
shape the data sets and models that investors work with. Some poten-
tially useful ideas already exist in recent work. For example, Dugast and
Foucault (2020) present a model in which investors engage in costly and
random search for predictor variables. Gabaix (2014) reexamines con-
sumer theory and competitive equilibrium theory in a model in which
attention to many variables is costly. Routledge (2019) studies an asset
allocation problem in which investors have a preference for simplicity in
the statistical model they use to inform their asset allocation decision.

It would be interesting to put such frictions into an asset pricing frame-
work in which one can analyze questions about return predictability.
Which types of data are more likely to be incorporated into prices;
which types of data get ignored due to the frictions and then show
up as predictable components in returns? Are there ways of calibrat-
ing these frictions to get quantitative predictions for the asset pricing
consequences?

With a microfoundation for excessive sparsity or shrinkage, one could
then also examine how these frictions changed over time and what
consequences this had for asset prices. Investors several decades ago pre-
sumably found it much more costly to find, process, and analyze data.
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Which features of the cash flow generating process are they therefore
likely to have missed? How does this affect the return predictability that
a current econometrician—armed with current data sets and computing
power—may find in historical data from these earlier times?

6.3.2 Heterogeneity

Another stark simplification in the model outlined in Chapter 5 is the
homogeneity of investors. All investors are identical and this is common
knowledge. As a necessary consequence, investors’ learning problem is
limited to learning about exogenous fundamentals. Investors learn from
realizations of exogenous cash flows about the properties of the cash flow
process, but there is no scope for learning from endogenous variables and
for learning about other market participants in this model.

Many interesting questions therefore remain unanswered. One has to
do with heterogeneity in terms of sophistication. Some market partici-
pants have extremely strong data collection and analysis capabilities that
help them to find profitable investment strategies in a high-dimensional
environment. Other market participants may be less sophisticated and
some of their investments decisions may be based on noise rather than
signal. The trading of such noise traders in the marketplace may generate
profitable opportunities for the sophisticated investors to exploit. But to
do so, the sophisticated investors may need to learn from past price data
about the behavior of the less sophisticated agents. Thus, introduction of
heterogeneity in sophistication also introduces scope for learning from
the endogenous price history. And in a high-dimensional environment
where a large number of firm characteristics are relevant for predicting
asset fundamentals, large numbers of these firm characteristics may also
be relevant for teasing out from past price data the mispricings induced by
noise trader demand. It would therefore be natural to model sophisticated
investors as users of ML tools in their learning process.

Intuitively, many researchers would probably agree that there is a
continuous process of mispricing discovery and elimination in financial
markets, but there are very few formal models of this process. Moreover,
for the learning about mispricing to be realistic in terms of its difficulty,
this problem should be studied in a high-dimensional setting.

A recent paper by Davis (2020) takes some steps in this direction. In his
model, ML investors use historical price data to learn about the mispric-
ing induced by noise trader asset demand. In an early period, only noise
traders are present. Through simulation, he examines to what extent mis-
pricing gets eliminated in equilibrium when ML investors enter the market
in future periods. Many interesting variations of this theme are still to be
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explored. For instance, what would be the optimal ML approach for the
sophisticated investors in an environment like this? What would they do
if they were Bayesians? Which prior beliefs would be objectively correct
in this setting? If ML investors are present in multiple periods and con-
tinue to learn each period, does their learning problem get complicated by
the fact that now past price data not only reflects noise trader activity but
also the price impact of ML investors” own trading? What happens when
capital available to ML investors depends on their past performance?

Given that there is a great deal of specialization among investors in
financial markets, it would be interesting to examine heterogeneity among
sophisticated investors. In reality, there seems to be a lot of sparsity in
the models that professional investors use, explicitly or implicitly. For
example, some focus on detailed fundamental analyses of a small num-
ber of companies, some conduct comprehensive statistical analyses in a
broad cross-section of assets, others focus on signals embedded in assets’
price histories. Each of these specialists omits a wide range of potentially
predictive variables from their models.

To obtain such specialization and sparsity in a theoretical model, there
has to be a cost associated with comprehensive, complex models. More-
over, investors have to be differentiated in some way. Heterogeneity in
cost functions, for instance, could be a source of such differentiation. It
would also be interesting to investigate whether slight random differences
in initial conditions before investors approach data—say, in their prior
beliefs, the data samples available to them, or the methods of analysis—
in a high-dimensional environment could lead to substantial differences
in their forecasting models.

It is an open question whether this specialization is important for
equilibrium outcomes. Can one represent, at least approximately, the
asset demands of such investors using sparse models with a representa-
tive investor who learns from public data, perhaps with shrinkage, but
without imposing sparsity on the forecasting model? Or is something
important getting lost in this approximation?

Balasubramanian and Yang (2020) is a recent example of a model of
investor learning in a high-dimensional environment where heterogene-
ity is important for equilibrium outcomes. In their model, investors use
publicly observed covariates to forecast fundamentals with a Bayesian
regression along similar lines as in the model of Chapter 5. To form pos-
terior beliefs, investors combine historical data with their prior beliefs
about the model governing the asset fundamentals. While they all see the
same public data, investors are heterogeneous in that they also receive
private signals about fundamental value. In some sense, investors’ models
are extremely sparse because they only observe their own private signal,
not the private signals of others. The key assumption in the model is that
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investors are uncertain about other investors’ prior beliefs. If the envi-
ronment is sufficiently high-dimensional, then, as a consequence of the
uncertainty about others’ priors, it can be near-optimal, in equilibrium,
for investors to base their asset demands on their own statistical fore-
casts without conditioning on price. As a result, the equilibrium price
contains more noise than it would if investors could frictionlessly share
all information.

This model has some attractive features that push the modeling
of investor learning toward greater realism: investors digest high-
dimensional information, they specialize in different sources of informa-
tion, they are sophisticated in their learning about asset fundamentals,
and they are not sure about the priors others hold when they approach
the data. What a model with heterogeneity of this kind would imply for
in-sample and out-of-sample return predictability, and the evolution of
this predictability over time, is still an open question.

In a multi-period setting, it could further be interesting to have some
investors specialize in non-price predictors of asset fundamentals while
others focus on information embedded in the price history. Such a the-
ory would share similarities with Hong and Stein (1999)—a model that
produces predictable under- and overreaction patterns in returns. In their
model, fundamental information diffuses gradually and investors observ-
ing these signals do not condition their asset demands on price. Investors
forecasting based on price history are able to use only a sparse represen-
tation of this price history. In their model, these assumptions are imposed
ad hoc, but it would be interesting to examine whether a combination of
a high-dimensional environment and uncertainty about other investors’
priors could explain a neglect of conditioning on price and the sparsity of
investors’ models.

6.4 CONCLUDING REMARKS

Financial markets are places where participants process information from
an incredibly rich array of data sources. ML methods allow researchers to
bring this richness into empirical and theoretical studies of asset prices.
As the earlier chapters in this book have demonstrated, embracing this
richness leads to a novel perspective on asset prices. Empirical estimates of
risk and return look different from what models with artificially imposed
sparsity would suggest. The economic interpretation of these estimates
in terms of risk premia, mispricing due to investor biases, or learning-
induced return predictability is different as well.
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There are exciting research opportunities at this frontier. Some new
puzzles will emerge in empirical studies employing ML methods; oth-
ers may find a resolution through theoretical models that account for
the difficulty of investors’ learning problem in high-dimensional envi-
ronments. Altogether, this should lead to a better understanding of the
dynamic process by which complex information is distilled into market
prices.
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